Bipolar barotropic non-newtonian compressible fluids

Šárka MatuŠů-Nečasová; Mária Medvidová-Lukáčová

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 5, page 923-934
  • ISSN: 0764-583X

How to cite

top

MatuŠů-Nečasová, Šárka, and Medvidová-Lukáčová, Mária. "Bipolar barotropic non-newtonian compressible fluids." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 923-934. <http://eudml.org/doc/194025>.

@article{MatuŠů2000,
author = {MatuŠů-Nečasová, Šárka, Medvidová-Lukáčová, Mária},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {non-Newtonian compressible bipolar fluids; barotropic motion; stress tensor; asymptotic stability; regularity},
language = {eng},
number = {5},
pages = {923-934},
publisher = {Dunod},
title = {Bipolar barotropic non-newtonian compressible fluids},
url = {http://eudml.org/doc/194025},
volume = {34},
year = {2000},
}

TY - JOUR
AU - MatuŠů-Nečasová, Šárka
AU - Medvidová-Lukáčová, Mária
TI - Bipolar barotropic non-newtonian compressible fluids
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 923
EP - 934
LA - eng
KW - non-Newtonian compressible bipolar fluids; barotropic motion; stress tensor; asymptotic stability; regularity
UR - http://eudml.org/doc/194025
ER -

References

top
  1. [1] C. Amrouche and D. Cioranescu, On a class of fluids of grade 3, Laboratoire d'analyse numérique de l'université Pierre et Marie Curie, rapport 88006 (1988). Zbl0887.76007
  2. [2] C. Amrouche, Sur une classe de fluides non newtoniens : les solutions aqueuses de polymère, Quart. Appl. Math. L(4) (1992) 779-791. Zbl0765.76002MR1193666
  3. [3] H. Bellout, F. Bloom and J. Nečas, Young measure-valued solutions for non-Newtonian incompressible fluids. Commun Partial Differential Equations 19 (1994) 1763-1803. Zbl0840.35079MR1301173
  4. [4] Beirão da Veiga, An Lp - theory for the n-dimensional stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions Comm. Math. Phys. 109 (1987) 229-248. Zbl0621.76074MR880415
  5. [5] D. Cioranescu and E.H. Quazar, Existence and uniqueness for fluids of second grade Collège de France Seminars, Pitman Res Notes Math. Ser. 109 (1984) 178-197. Zbl0577.76012MR772241
  6. [6] E. Feireisl and H. Petzeltová, On the steady state solutions to the Navier-Stokes equations of compressible flow. Manuscripta Math. 97 (1998) 109-116. Zbl0910.35097MR1642646
  7. [7] E. Feireisl and H. Petzeltová, The zero - velocity limit solutions of the Navier-Stokes equations of compressible fluid revisited, in Proc. of Navier-Stokes equations and the Related Problem, (1999) Zbl1011.35102MR1896932
  8. [8] G.P. Galdi, Mathematical theory of second grade fluids, Stability and Wave Propagation in Fluids, G.P. Galdi Ed., CISM Course and Lectures 344, Springer, New York (1995) 66-103. Zbl0828.76006MR1414954
  9. [9] G.P. Galdi and A. Sequeira, Further existence results for classical solutions of the equations of a second grade fluid. Arch. Ration. Mech. Anal. 28 (1994) 297-321. Zbl0833.76005MR1308855
  10. [10] D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids. Springer Verlag, New York (1990). Zbl0698.76002MR1051193
  11. [11] J. Málek, J. Nečas, M. Rokyta and R. Růžička, Weak and Measure-valued solutions to evolutionary partial differential equations. Chapman and Hall (1996). Zbl0851.35002
  12. [12] A.E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity. I Siberian Math. J. 40 (1999) 351-362. Zbl0938.35121MR1698313
  13. [13] A. E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity II. Siberian Math. J. 40 (1999) 541-555 Zbl0928.35119MR1709015
  14. [14] Š Matušů-Nečasová and M. Medvid'ová, Bipolar barotropic nonnewtonian fluid. Comment. Math. Univ. Carolin 35 (1994) 467-483. Zbl0809.76001MR1307274
  15. [15] Š. Matušů-Nečasová, A. Sequeira and J.H. Videman, Existence of Classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Math. Methods Appl. Sci. 22 (1999) 449-460. Zbl0916.76004MR1679127
  16. [16] Š. Matušů-Nečasová and M. Medvid'ová-Lukáčová, Bipolar Isothermal non-Newtonian compressible fluids. J. Math. Anal. Appl. 225 (1998) 168-192. Zbl0951.76004MR1639232
  17. [17] J. Nečas and M. Šilhavý, Multipolar viscous fluids. Quart. Appl. Math. XLIX (1991) 247-266 Zbl0732.76003MR1106391
  18. [18] J. Nečas, A. Novotný and M. Šilhavý, Global solutions to the viscous compressible barotropic multipolar gas. Theoret Comp. Fluid Dynamics 4 (1992) 1-11. Zbl0761.76006
  19. [19] J. Nečas, Theory of multipolar viscous fluids, in The Mathematics of Finite Elements and Applications VII MAFELAP 1990, J.R. Whitemann Ed., Academic Press, New York (1991) 233-244. Zbl0815.76009MR1132501
  20. [20] J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Proc. of the International Conference on the Navier-Stokes equations, Theory and Numerical Methods, Varenna, June 1997, R. Salvi Ed, Pitman Res. Notes Math. Ser. 388 (1998) 86-100. Zbl0954.35130MR1773588
  21. [21] J. Neustupa, The global existence of solutions to the equations of motion of a viscous gas with an artificial viscosity. Math. Methods. Appl. Sci. 14 (1991) 93-119. Zbl0724.76073MR1091171
  22. [22] J.G. Oldroyd, On the formulation of rheological equations of state. Proc. Roy. Soc. London A200 (1950) 523-541. Zbl1157.76305MR35192
  23. [23] K.R. Rajagopal, Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics Series 291, Longman Scientific & Technical Reports (1993). Zbl0818.76003MR1268237
  24. [24] M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical problems in Viscoelasticity, Longman, New York (1987). Zbl0719.73013MR919738
  25. [25] R. Salvi and I. Straškraba, Global existence for viscous compressible fluids and their behaviour as t → ∞. J. Faculty Sci. Univ. Tokyo, Sect. I, A40 (1993) 17-51. Zbl0785.35074MR1217657
  26. [26] W.R. Schowalter, Mechanics of Non-Newtonian Fluids. Pergamon Press, New York (1978). 
  27. [27] M.H. Sy, Contributions à l'étude mathématique des problèmes issus de la mécanique des fluides viscoélastiques. Lois de comportement de type intégral ou différentiel. Thèse d'université de Paris-Sud, Orsay (1996). 
  28. [28] C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992). Zbl0779.73004MR1215940

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.