Bipolar barotropic non-newtonian compressible fluids
Šárka MatuŠů-Nečasová; Mária Medvidová-Lukáčová
- Volume: 34, Issue: 5, page 923-934
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMatuŠů-Nečasová, Šárka, and Medvidová-Lukáčová, Mária. "Bipolar barotropic non-newtonian compressible fluids." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 923-934. <http://eudml.org/doc/194025>.
@article{MatuŠů2000,
author = {MatuŠů-Nečasová, Šárka, Medvidová-Lukáčová, Mária},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {non-Newtonian compressible bipolar fluids; barotropic motion; stress tensor; asymptotic stability; regularity},
language = {eng},
number = {5},
pages = {923-934},
publisher = {Dunod},
title = {Bipolar barotropic non-newtonian compressible fluids},
url = {http://eudml.org/doc/194025},
volume = {34},
year = {2000},
}
TY - JOUR
AU - MatuŠů-Nečasová, Šárka
AU - Medvidová-Lukáčová, Mária
TI - Bipolar barotropic non-newtonian compressible fluids
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 923
EP - 934
LA - eng
KW - non-Newtonian compressible bipolar fluids; barotropic motion; stress tensor; asymptotic stability; regularity
UR - http://eudml.org/doc/194025
ER -
References
top- [1] C. Amrouche and D. Cioranescu, On a class of fluids of grade 3, Laboratoire d'analyse numérique de l'université Pierre et Marie Curie, rapport 88006 (1988). Zbl0887.76007
- [2] C. Amrouche, Sur une classe de fluides non newtoniens : les solutions aqueuses de polymère, Quart. Appl. Math. L(4) (1992) 779-791. Zbl0765.76002MR1193666
- [3] H. Bellout, F. Bloom and J. Nečas, Young measure-valued solutions for non-Newtonian incompressible fluids. Commun Partial Differential Equations 19 (1994) 1763-1803. Zbl0840.35079MR1301173
- [4] Beirão da Veiga, An Lp - theory for the n-dimensional stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions Comm. Math. Phys. 109 (1987) 229-248. Zbl0621.76074MR880415
- [5] D. Cioranescu and E.H. Quazar, Existence and uniqueness for fluids of second grade Collège de France Seminars, Pitman Res Notes Math. Ser. 109 (1984) 178-197. Zbl0577.76012MR772241
- [6] E. Feireisl and H. Petzeltová, On the steady state solutions to the Navier-Stokes equations of compressible flow. Manuscripta Math. 97 (1998) 109-116. Zbl0910.35097MR1642646
- [7] E. Feireisl and H. Petzeltová, The zero - velocity limit solutions of the Navier-Stokes equations of compressible fluid revisited, in Proc. of Navier-Stokes equations and the Related Problem, (1999) Zbl1011.35102MR1896932
- [8] G.P. Galdi, Mathematical theory of second grade fluids, Stability and Wave Propagation in Fluids, G.P. Galdi Ed., CISM Course and Lectures 344, Springer, New York (1995) 66-103. Zbl0828.76006MR1414954
- [9] G.P. Galdi and A. Sequeira, Further existence results for classical solutions of the equations of a second grade fluid. Arch. Ration. Mech. Anal. 28 (1994) 297-321. Zbl0833.76005MR1308855
- [10] D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids. Springer Verlag, New York (1990). Zbl0698.76002MR1051193
- [11] J. Málek, J. Nečas, M. Rokyta and R. Růžička, Weak and Measure-valued solutions to evolutionary partial differential equations. Chapman and Hall (1996). Zbl0851.35002
- [12] A.E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity. I Siberian Math. J. 40 (1999) 351-362. Zbl0938.35121MR1698313
- [13] A. E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity II. Siberian Math. J. 40 (1999) 541-555 Zbl0928.35119MR1709015
- [14] Š Matušů-Nečasová and M. Medvid'ová, Bipolar barotropic nonnewtonian fluid. Comment. Math. Univ. Carolin 35 (1994) 467-483. Zbl0809.76001MR1307274
- [15] Š. Matušů-Nečasová, A. Sequeira and J.H. Videman, Existence of Classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Math. Methods Appl. Sci. 22 (1999) 449-460. Zbl0916.76004MR1679127
- [16] Š. Matušů-Nečasová and M. Medvid'ová-Lukáčová, Bipolar Isothermal non-Newtonian compressible fluids. J. Math. Anal. Appl. 225 (1998) 168-192. Zbl0951.76004MR1639232
- [17] J. Nečas and M. Šilhavý, Multipolar viscous fluids. Quart. Appl. Math. XLIX (1991) 247-266 Zbl0732.76003MR1106391
- [18] J. Nečas, A. Novotný and M. Šilhavý, Global solutions to the viscous compressible barotropic multipolar gas. Theoret Comp. Fluid Dynamics 4 (1992) 1-11. Zbl0761.76006
- [19] J. Nečas, Theory of multipolar viscous fluids, in The Mathematics of Finite Elements and Applications VII MAFELAP 1990, J.R. Whitemann Ed., Academic Press, New York (1991) 233-244. Zbl0815.76009MR1132501
- [20] J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Proc. of the International Conference on the Navier-Stokes equations, Theory and Numerical Methods, Varenna, June 1997, R. Salvi Ed, Pitman Res. Notes Math. Ser. 388 (1998) 86-100. Zbl0954.35130MR1773588
- [21] J. Neustupa, The global existence of solutions to the equations of motion of a viscous gas with an artificial viscosity. Math. Methods. Appl. Sci. 14 (1991) 93-119. Zbl0724.76073MR1091171
- [22] J.G. Oldroyd, On the formulation of rheological equations of state. Proc. Roy. Soc. London A200 (1950) 523-541. Zbl1157.76305MR35192
- [23] K.R. Rajagopal, Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics Series 291, Longman Scientific & Technical Reports (1993). Zbl0818.76003MR1268237
- [24] M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical problems in Viscoelasticity, Longman, New York (1987). Zbl0719.73013MR919738
- [25] R. Salvi and I. Straškraba, Global existence for viscous compressible fluids and their behaviour as t → ∞. J. Faculty Sci. Univ. Tokyo, Sect. I, A40 (1993) 17-51. Zbl0785.35074MR1217657
- [26] W.R. Schowalter, Mechanics of Non-Newtonian Fluids. Pergamon Press, New York (1978).
- [27] M.H. Sy, Contributions à l'étude mathématique des problèmes issus de la mécanique des fluides viscoélastiques. Lois de comportement de type intégral ou différentiel. Thèse d'université de Paris-Sud, Orsay (1996).
- [28] C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992). Zbl0779.73004MR1215940
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.