Convergence analysis for an exponentially fitted finite volume method

Reiner Vanselow

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 6, page 1165-1188
  • ISSN: 0764-583X

How to cite

top

Vanselow, Reiner. "Convergence analysis for an exponentially fitted finite volume method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.6 (2000): 1165-1188. <http://eudml.org/doc/194032>.

@article{Vanselow2000,
author = {Vanselow, Reiner},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convergence; finite volume method; convection-diffusion problem; Voronoi box; exponential fitting; Petrov-Galerkin finite element method},
language = {eng},
number = {6},
pages = {1165-1188},
publisher = {Dunod},
title = {Convergence analysis for an exponentially fitted finite volume method},
url = {http://eudml.org/doc/194032},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Vanselow, Reiner
TI - Convergence analysis for an exponentially fitted finite volume method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 6
SP - 1165
EP - 1188
LA - eng
KW - convergence; finite volume method; convection-diffusion problem; Voronoi box; exponential fitting; Petrov-Galerkin finite element method
UR - http://eudml.org/doc/194032
ER -

References

top
  1. [1] L. Angermann, Error Estimate for the Finite-Element Solution of an Elliptic Singularly Perturbed Problem. IMA J. Numer. Anal 15 (1995) 161-196. Zbl0831.65117MR1323737
  2. [2] R.E. Bank, J.F. Bürgler, W. Fichtner and R.K. Smith, Some Upwinding Techniques for Finite Element Approximations of Convection-Diffusion Equations. Numer. Math. 58 (1990) 185-202. Zbl0713.65066MR1069278
  3. [3] R.E. Bank, W.M. Jr. Coughran and L.C. Cowsar, The Finite Volume Scharfetter-Gummel Method for Steady Convection Diffusion Equations. Comput. Visual Sci. 1 (1998) 123-136. Zbl0912.68084
  4. [4] J. Baranger, J.-F. Maître and F. Oudin, Connection between Finite Volume and Mixed Finite Element Methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. Zbl0857.65116MR1399499
  5. [5] D. Braess, Finite Elemente. Springer, Berlin (1992). Zbl0754.65084
  6. [6] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, Part 1, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam (1991) 17-351. Zbl0875.65086MR1115237
  7. [7] R. Eymard, T. Gallouet and R. Herbin, Convergence of Finite Volume Schemes for Semilinear Convection Diffusion Equations. Numer. Math. 1 (1999) 1-26. Zbl0930.65118MR1681308
  8. [8] E. Gatti, S. Micheletti and R. Sacco, A New Galerkin Framework for the Drift-Diffusion Equation in Semiconductors. East-West J. Numer. Math. 6 (1998) 101-135. Zbl0915.65128MR1635463
  9. [9] B. Heinrich, Finite Difference Methods on Irregular Networks. A Generalized Approach to Second Order Problems. Akademie, Berlin (1987). Zbl0606.65065MR875416
  10. [10] R. Herbin, An Error Estimate for a Finite Volume Scheme for a Diffusion-Convection Problem on a Triangular Mesh. Numer. Methods Partial Differential Equations 11 (1995) 165-173. Zbl0822.65085MR1316144
  11. [11] R.D. Lazarov and I.D. Mishev, Finite Volume Methods for Reaction-Diffusion Problems, in Finite Volumes for Complex Applications, F. Benkhaldoun and R. Vilsmeier Eds., Hermes, Paris (1996) 231-240. Zbl0847.65075
  12. [12] J.J.H. Miller and S. Wang, A New Non-Conforming Petrov-Galerkin Finite Element Method with Triangular Elements for an Advection-Diffusion Problem. IMA J. Numer. Anal. 14 (1994) 257-276. Zbl0806.65111MR1268995
  13. [13] I.D. Mishev, Finite Volume and Finite Volume Element Methods for Nonsymmetric Problems. Ph.D. thesis, Texas A&M University (1996). 
  14. [14] K.W. Morton, Numerical Solution of Convection-Diffusion Problems. Chapman and Hall, London (1996). Zbl0861.65070MR1445295
  15. [15] K.W. Morton, M. Stynes and E. Süli, Analysis of a Cell-Vertex Finite Volume Method for Convection-Diffusion Problems, Math. Comp. 66 (1997) 1369-1406. Zbl0885.65121MR1432132
  16. [16] H.G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Springer, London(1996). Zbl0844.65075MR1477665
  17. [17] R. Sacco and M. Stynes, Finite Element Methods for Convection-Diffusion Problems Using Exponential Splines on Triangles. Comput. Math. Appl 35 (1998) 35-45. Zbl0907.65110MR1605547
  18. [18] R. Sacco, E. Gatti and L. Gotusso, A Nonconforming Exponentially Fitted Finite Element Method for Two-Dimensional Drift-Diffusion Models in Semiconductors. Numer. Methods Partial Differential Equations 15 (1999) 133-150. Zbl0926.65119MR1674361
  19. [19] H.-P. Scheffler and R. Vanselow, Convergence Analysis of a Cell-Centered FVM, in Finite Volumes for Complex Applications II, R. Vilsmeier, F. Benkhaldoun and D. Hänel Eds., Hermes, Paris (1999) 181-188. Zbl1052.65558MR2062137
  20. [20] L.L. Schumaker, Spline Functions: Basic Theory. Wiley, New York (1981). Zbl0449.41004MR606200
  21. [21] S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984). 
  22. [22] G. Strang, Variational Crimes in the Finite Element Method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press (1972) 689-710. Zbl0264.65068MR413554
  23. [23] R. Vanselow and H.-P. Scheffler, Convergence Analysis of a Finite Volume Method via a New Nonconforming Finite Element Method. Numer. Methods Partial Differential Equations 14 (1998) 213-231. Zbl0903.65084MR1605414
  24. [24] R. Vanselow, Convergence Analysis for an Exponentially Fitted FVM. Preprint MATH-NM-09-99, TU Dresden (1999). 
  25. [25] J. Xu and L. Zikatanov, A Monotone Finite Element Scheme for Convection-Diffusion Equations. Math. Comp. 68 (1999) 1429-1446. Zbl0931.65111MR1654022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.