Convergence analysis for an exponentially fitted finite volume method
- Volume: 34, Issue: 6, page 1165-1188
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVanselow, Reiner. "Convergence analysis for an exponentially fitted finite volume method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.6 (2000): 1165-1188. <http://eudml.org/doc/194032>.
@article{Vanselow2000,
author = {Vanselow, Reiner},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convergence; finite volume method; convection-diffusion problem; Voronoi box; exponential fitting; Petrov-Galerkin finite element method},
language = {eng},
number = {6},
pages = {1165-1188},
publisher = {Dunod},
title = {Convergence analysis for an exponentially fitted finite volume method},
url = {http://eudml.org/doc/194032},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Vanselow, Reiner
TI - Convergence analysis for an exponentially fitted finite volume method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 6
SP - 1165
EP - 1188
LA - eng
KW - convergence; finite volume method; convection-diffusion problem; Voronoi box; exponential fitting; Petrov-Galerkin finite element method
UR - http://eudml.org/doc/194032
ER -
References
top- [1] L. Angermann, Error Estimate for the Finite-Element Solution of an Elliptic Singularly Perturbed Problem. IMA J. Numer. Anal 15 (1995) 161-196. Zbl0831.65117MR1323737
- [2] R.E. Bank, J.F. Bürgler, W. Fichtner and R.K. Smith, Some Upwinding Techniques for Finite Element Approximations of Convection-Diffusion Equations. Numer. Math. 58 (1990) 185-202. Zbl0713.65066MR1069278
- [3] R.E. Bank, W.M. Jr. Coughran and L.C. Cowsar, The Finite Volume Scharfetter-Gummel Method for Steady Convection Diffusion Equations. Comput. Visual Sci. 1 (1998) 123-136. Zbl0912.68084
- [4] J. Baranger, J.-F. Maître and F. Oudin, Connection between Finite Volume and Mixed Finite Element Methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. Zbl0857.65116MR1399499
- [5] D. Braess, Finite Elemente. Springer, Berlin (1992). Zbl0754.65084
- [6] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, Part 1, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam (1991) 17-351. Zbl0875.65086MR1115237
- [7] R. Eymard, T. Gallouet and R. Herbin, Convergence of Finite Volume Schemes for Semilinear Convection Diffusion Equations. Numer. Math. 1 (1999) 1-26. Zbl0930.65118MR1681308
- [8] E. Gatti, S. Micheletti and R. Sacco, A New Galerkin Framework for the Drift-Diffusion Equation in Semiconductors. East-West J. Numer. Math. 6 (1998) 101-135. Zbl0915.65128MR1635463
- [9] B. Heinrich, Finite Difference Methods on Irregular Networks. A Generalized Approach to Second Order Problems. Akademie, Berlin (1987). Zbl0606.65065MR875416
- [10] R. Herbin, An Error Estimate for a Finite Volume Scheme for a Diffusion-Convection Problem on a Triangular Mesh. Numer. Methods Partial Differential Equations 11 (1995) 165-173. Zbl0822.65085MR1316144
- [11] R.D. Lazarov and I.D. Mishev, Finite Volume Methods for Reaction-Diffusion Problems, in Finite Volumes for Complex Applications, F. Benkhaldoun and R. Vilsmeier Eds., Hermes, Paris (1996) 231-240. Zbl0847.65075
- [12] J.J.H. Miller and S. Wang, A New Non-Conforming Petrov-Galerkin Finite Element Method with Triangular Elements for an Advection-Diffusion Problem. IMA J. Numer. Anal. 14 (1994) 257-276. Zbl0806.65111MR1268995
- [13] I.D. Mishev, Finite Volume and Finite Volume Element Methods for Nonsymmetric Problems. Ph.D. thesis, Texas A&M University (1996).
- [14] K.W. Morton, Numerical Solution of Convection-Diffusion Problems. Chapman and Hall, London (1996). Zbl0861.65070MR1445295
- [15] K.W. Morton, M. Stynes and E. Süli, Analysis of a Cell-Vertex Finite Volume Method for Convection-Diffusion Problems, Math. Comp. 66 (1997) 1369-1406. Zbl0885.65121MR1432132
- [16] H.G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Springer, London(1996). Zbl0844.65075MR1477665
- [17] R. Sacco and M. Stynes, Finite Element Methods for Convection-Diffusion Problems Using Exponential Splines on Triangles. Comput. Math. Appl 35 (1998) 35-45. Zbl0907.65110MR1605547
- [18] R. Sacco, E. Gatti and L. Gotusso, A Nonconforming Exponentially Fitted Finite Element Method for Two-Dimensional Drift-Diffusion Models in Semiconductors. Numer. Methods Partial Differential Equations 15 (1999) 133-150. Zbl0926.65119MR1674361
- [19] H.-P. Scheffler and R. Vanselow, Convergence Analysis of a Cell-Centered FVM, in Finite Volumes for Complex Applications II, R. Vilsmeier, F. Benkhaldoun and D. Hänel Eds., Hermes, Paris (1999) 181-188. Zbl1052.65558MR2062137
- [20] L.L. Schumaker, Spline Functions: Basic Theory. Wiley, New York (1981). Zbl0449.41004MR606200
- [21] S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984).
- [22] G. Strang, Variational Crimes in the Finite Element Method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press (1972) 689-710. Zbl0264.65068MR413554
- [23] R. Vanselow and H.-P. Scheffler, Convergence Analysis of a Finite Volume Method via a New Nonconforming Finite Element Method. Numer. Methods Partial Differential Equations 14 (1998) 213-231. Zbl0903.65084MR1605414
- [24] R. Vanselow, Convergence Analysis for an Exponentially Fitted FVM. Preprint MATH-NM-09-99, TU Dresden (1999).
- [25] J. Xu and L. Zikatanov, A Monotone Finite Element Scheme for Convection-Diffusion Equations. Math. Comp. 68 (1999) 1429-1446. Zbl0931.65111MR1654022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.