Connection between finite volume and mixed finite element methods
Jacques Baranger; Jean-François Maitre; Fabienne Oudin
- Volume: 30, Issue: 4, page 445-465
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBaranger, Jacques, Maitre, Jean-François, and Oudin, Fabienne. "Connection between finite volume and mixed finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.4 (1996): 445-465. <http://eudml.org/doc/193811>.
@article{Baranger1996,
author = {Baranger, Jacques, Maitre, Jean-François, Oudin, Fabienne},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed finite element method; finite volume method; Laplace equation; Raviart-Thomas element; error bounds},
language = {eng},
number = {4},
pages = {445-465},
publisher = {Dunod},
title = {Connection between finite volume and mixed finite element methods},
url = {http://eudml.org/doc/193811},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Baranger, Jacques
AU - Maitre, Jean-François
AU - Oudin, Fabienne
TI - Connection between finite volume and mixed finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 4
SP - 445
EP - 465
LA - eng
KW - mixed finite element method; finite volume method; Laplace equation; Raviart-Thomas element; error bounds
UR - http://eudml.org/doc/193811
ER -
References
top- [1] J. BARANGER, P. EMONOT, J.-F. MAITRE, 1992, High order lagrangian finite volume elements for elliptic boundary value problems, Numerical Methods in Engineering 92, Ch. Hirsch et al. ed., Elsevier Science Publishers, pp. 709-713.
- [2] J. BARANGER, J.-F MAITRE, F. OUDIN, 1994, Application de la théorie des éléments finis mixtes à l'étude d'une classe de schémas aux volumes différences finis pour les problèmes elliptiques, C.R. Acad. Sci. Paris, 319, Série I, pp.401-404. Zbl0804.65102MR1289320
- [3] F. BREZZI, M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer-Verlag, New-York. Zbl0788.73002MR1115205
- [4] P. G. CIARLET, P.A. RAVIART, 1972, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rat. Mech. Anal., 46, pp. 177-199. Zbl0243.41004MR336957
- [5] I. FAILLE, 1992, A control volume method to solve an elliptic equation on a two-dimensional irregular mesh, Comput. Methods Appl. Mech. Engrg,, 100, pp. 275-290. Zbl0761.76068MR1187634
- [6] I. FAILLE, T. GALLOUET, R. HERBIN, 1991, Des mathématiciens découvrent les volumes finis, S.M.A.I., Matapli, Bulletin de liaison, 28.
- [7] M. FARHLOUL, 1991, Méthodes d'éléments finis mixtes et volumes finis, Thèse, Université Laval, Québec.
- [8] D. A. Jr. FORSYTH, P. H. SAMMON, 1988, Quadratic convergence for cell-centered grids, Applied Numerical Mathematics, 4, pp. 377-394. Zbl0651.65086MR948505
- [9] W. HACKBUSCH, 1989, On first and second order box schemes, Computing, 41, pp. 277-296. Zbl0649.65052MR993825
- [10] Y. HAUGAZEAU, P. LACOSTE, 1993, Condensation de la matrice de masse pour les éléments finis mixtes de H (rot), C.R. Acad. Sci. Paris, 316, Série I, pp. 509-512. Zbl0767.65076MR1209276
- [11] R. HERBIN, An error estimate for a finite volume scheme for a diffusion convection problem on a triangular mesh, accepted for publication in Num. Meth. P.D.E. Zbl0822.65085MR1316144
- [12] K. W. MORTON, E. SULI, 1991, Finite volume methods and their analysis, IMA Journal of Num. Anal., 11,pp. 241-260. Zbl0729.65087MR1105229
- [13] J. C. NEDELEC, 1991, Notions sur les techniques d'éléments finis, Mathématiques et Applications, 7, Ellipses-Edition Marketing. Zbl0847.65078
- [14] P. A. RAVIART, J. M. THOMAS, 1977, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Methods (I. Galligani, E. Magenes, eds), Lectures Notes in Math., 606, Springer-Verlag, New-York. Zbl0362.65089MR483555
- [15] J. E. ROBERTS, J. M. THOMAS, 1989, Mixed and hybrid methods, in Handbook of Numerical Analysis, (P. G. Ciarlet and J. L. Lions, eds.), Vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam. Zbl0875.65090MR1115239
- [16] A. WEISER, M. F. WEELER1988, On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal., 25, pp.351-375. Zbl0644.65062MR933730
Citations in EuDML Documents
top- Yves Coudière, Jean-Paul Vila, Philippe Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem
- Reiner Vanselow, Convergence analysis for an exponentially fitted finite volume method
- B. Courbet, J. P. Croisille, Finite volume box schemes on triangular meshes
- Reiner Vanselow, Convergence analysis for an exponentially fitted Finite Volume Method
- Yves Coudière, Philippe Villedieu, Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes
- Komla Domelevo, Pascal Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids
- Paola Causin, Riccardo Sacco, Carlo L. Bottasso, Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems
- Yves Coudière, Philippe Villedieu, Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes
- Paola Causin, Riccardo Sacco, Carlo L. Bottasso, Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems
- Komla Domelevo, Pascal Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.