Numerical study of self-focusing solutions to the Schrödinger-Debye system
Christophe Besse; Brigitte Bidégaray
- Volume: 35, Issue: 1, page 35-55
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBesse, Christophe, and Bidégaray, Brigitte. "Numerical study of self-focusing solutions to the Schrödinger-Debye system." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.1 (2001): 35-55. <http://eudml.org/doc/194044>.
@article{Besse2001,
abstract = {In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.},
author = {Besse, Christophe, Bidégaray, Brigitte},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear optics; Schrödinger-like equations; relaxation method; split-step method; self-focusing; self-focusing solutions; Schrödinger-Debye system; blow-up solutions; relaxation scheme},
language = {eng},
number = {1},
pages = {35-55},
publisher = {EDP-Sciences},
title = {Numerical study of self-focusing solutions to the Schrödinger-Debye system},
url = {http://eudml.org/doc/194044},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Besse, Christophe
AU - Bidégaray, Brigitte
TI - Numerical study of self-focusing solutions to the Schrödinger-Debye system
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 1
SP - 35
EP - 55
AB - In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.
LA - eng
KW - nonlinear optics; Schrödinger-like equations; relaxation method; split-step method; self-focusing; self-focusing solutions; Schrödinger-Debye system; blow-up solutions; relaxation scheme
UR - http://eudml.org/doc/194044
ER -
References
top- [1] G.D. Akrivis, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation (1997). Preprint. Zbl1039.35115MR2047201
- [2] C. Besse, Schéma de relaxation pour l’équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci., Sér. I 326 (1998) 1427–1432. Zbl0911.65072
- [3] C. Besse, Analyse numérique des systèmes de Davey-Stewartson. Ph.D. thesis, University of Bordeaux I, France (1998).
- [4] C. Besse, B. Bidégaray and S. Descombes, Accuracy of the split-step schemes for the Nonlinear Schrödinger Equation. (In preparation). Zbl1026.65073
- [5] B. Bidégaray, On the Cauchy problem for systems occurring in nonlinear optics. Adv. Differential Equations 3 (1998) 473–496. Zbl0949.35007
- [6] B. Bidégaray, The Cauchy problem for Schrödinger-Debye equations. Math. Models Methods Appl. Sci. 10 (2000) 307–315. Zbl1010.78010
- [7] J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London, Ser. A 351 (1995) 107–164. Zbl0824.65095
- [8] T. Cazenave, An introduction to nonlinear Schrödinger equations. Textos de métodos matemáticos 26, Rio de Janeiro (1990).
- [9] T. Cazenave, Blow-up and Scattering in the nonlinear Schrödinger equation. Textos de métodos matemáticos 30, Rio de Janeiro (1994).
- [10] T. Colin and P. Fabrie, Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete Contin. Dynam. Systems 4 (1998) 671–690. Zbl0976.76054
- [11] M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44 (1981) 277–288. Zbl0477.65086
- [12] B.O. Dia and M. Schatzman, Estimations sur la formule de Strang. C. R. Acad. Sci. Paris, Sér. I 320 (1995) 775–779. Zbl0827.47034
- [13] L. Di Menza, Approximations numériques d’équations de Schrödinger non linéaires et de modèles associés. Ph.D. thesis, University of Bordeaux I, France (1995).
- [14] P. Donnat, Quelques contributions mathématiques en optique non linéaire. Ph.D. thesis, École Polytechnique, France (1994).
- [15] G. Fibich and G.C. Papanicolaou, Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension. SIAM J. Appl. Math. 60 (2000) 183–240. Zbl1026.78013
- [16] R.T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comput. 58 (1992) 83–102. Zbl0746.65066
- [17] A.C. Newell and J.V. Moloney, Nonlinear Optics. Addison-Wesley (1992). MR1163192
- [18] J.M. Sanz-Serna Methods for the Numerical Solution of the Nonlinear Schrödinger Equation. Math. Comput. 43 (1984) 21–27 Zbl0555.65061
- [19] Y. R. Shen, The Principles of Nonlinear Optics. Wiley, New York (1984). Zbl1034.78001
- [20] G. Strang On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506–517. Zbl0184.38503
- [21] C. Sulem, P.L. Sulem and A. Patera, Numerical Simulation of Singular Solutions to the Two-Dimensional Cubic Schrödinger Equation. Commun. Pure Appl. Math. 37 (1984) 755–778. Zbl0543.65081
- [22] J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485–507. Zbl0597.76012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.