Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations
- Volume: 35, Issue: 2, page 295-312
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topPeng, Yue-Jun. "Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.2 (2001): 295-312. <http://eudml.org/doc/194051>.
@article{Peng2001,
abstract = {We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate $O(\varepsilon ^\frac\{1\}\{2\})$ to the quasi-neutral limit in $L^2$.},
author = {Peng, Yue-Jun},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {asymptotic analysis; boundary layers; optimal convergence rate; drift-diffusion equations; mixed boundary conditions},
language = {eng},
number = {2},
pages = {295-312},
publisher = {EDP-Sciences},
title = {Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations},
url = {http://eudml.org/doc/194051},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Peng, Yue-Jun
TI - Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 2
SP - 295
EP - 312
AB - We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate $O(\varepsilon ^\frac{1}{2})$ to the quasi-neutral limit in $L^2$.
LA - eng
KW - asymptotic analysis; boundary layers; optimal convergence rate; drift-diffusion equations; mixed boundary conditions
UR - http://eudml.org/doc/194051
ER -
References
top- [1] J.P. Aubin, Un théorème de compacité. C. R. Acad. Sci. Paris 256 (1963) 5042–5044. Zbl0195.13002
- [2] Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25 (2000) 737–754. Zbl0970.35110
- [3] H. Brézis, F. Golse, R. Sentis, Analyse asymptotique de l’équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas. C. R. Acad. Sci. Paris 321 (1995) 953–959. Zbl0839.76096
- [4] S. Cordier, P. Degond, P. Markowich, C. Schmeiser, Traveling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit. Asymptot. Anal. 11 (1995) 209–224. Zbl0849.35105
- [5] S. Cordier, E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm. Partial Differential Equations 25 (2000) 1099–1113. Zbl0978.82086
- [6] P.C. Fife, Semilinear elliptic boundary value problems with small parameters. Arch. Rational Mech. Anal. 52 (1973) 205–232. Zbl0268.35007
- [7] H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductor devices. Math. Models Methods Appl. Sci. 4 (1994) 121–133. Zbl0801.35133
- [8] I. Gasser, The initial time layer problem and the quasi-neutral limit in a nonlinear drift diffusion model for semiconductors. Nonlinear Differential Equations Appl. (to appear). Zbl0980.35158MR1841258
- [9] I. Gasser, D. Levermore, P. Markowich, C. Schmeiser, The initial time layer problem and the quasi-neutral limit in the drift-diffusion model (submitted). Zbl1018.82024
- [10] A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling. Math. Nachr. 185 (1997) 85–110. Zbl1157.35406
- [11] A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-relaxation-time limits. Comm. Partial Differential Equations 24 (1999) 1007–1033. Zbl0946.35074
- [12] A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 83–118. Zbl0956.35010
- [13] A. Jüngel, Y.J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisited. Z. Angew. Math. Phys. 51 (2000) 385–396. Zbl0963.35115
- [14] A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal. (to appear). Zbl1045.76058MR1865570
- [15] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villard, Paris (1969). Zbl0189.40603MR259693
- [16] P.A. Markowich, A singular perturbation analysis of the fundamental semiconductor device equations. SIAM J. Appl. Math. 44 (1984) 896–928. Zbl0568.35007
- [17] P.A. Markowich, C. Ringhofer, C. Schmeiser, An asymptotic analysis of one-dimensional models for semiconductor devices. IMA J. Appl. Math. 37 (1986) 1–24. Zbl0639.34016
- [18] Y.J. Peng, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for a nonlinear Euler-Poisson system. Nonlinear Anal. TMA 42 (2000) 1033–1054. Zbl0965.65113
- [19] P. Raviart, On singular perturbation problems for the nonlinear Poisson equation or: A mathematical approach to electrostatic sheaths and plasma erosion, Lect. Notes of the Summer school in Ile d’Oléron, France (1997) 452–539.
- [20] L. Tartar, Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics: Heriot-Watt Symp. Vol. 4 and Res. Notes Math. 3 (1979) 136–212. Zbl0437.35004
- [21] A. Visintin, Strong convergence results related to strict convexity. Comm. Partial Differential Equations 9 (1984) 439–466. Zbl0545.49019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.