Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena : local study and upscaling process

Serge Blancher; René Creff; Gérard Gagneux; Bruno Lacabanne; François Montel; David Trujillo

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 3, page 481-512
  • ISSN: 0764-583X

Abstract

top
Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a “mixed finite element” method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to the studied equations in order to obtain an efficient modelling of Soret effect and adsorption in a porous medium at a macroscopic scale.

How to cite

top

Blancher, Serge, et al. "Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena : local study and upscaling process." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.3 (2001): 481-512. <http://eudml.org/doc/194059>.

@article{Blancher2001,
abstract = {Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a “mixed finite element” method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to the studied equations in order to obtain an efficient modelling of Soret effect and adsorption in a porous medium at a macroscopic scale.},
author = {Blancher, Serge, Creff, René, Gagneux, Gérard, Lacabanne, Bruno, Montel, François, Trujillo, David},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {system of nonlinear parabolic equations; Soret effect; separation by thermal diffusion; mixed finite element; finite volume scheme; homogenization; two scale convergence; Schauder-Tikhonov fixed point theorem; mixed finite volume method},
language = {eng},
number = {3},
pages = {481-512},
publisher = {EDP-Sciences},
title = {Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena : local study and upscaling process},
url = {http://eudml.org/doc/194059},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Blancher, Serge
AU - Creff, René
AU - Gagneux, Gérard
AU - Lacabanne, Bruno
AU - Montel, François
AU - Trujillo, David
TI - Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena : local study and upscaling process
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 3
SP - 481
EP - 512
AB - Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a “mixed finite element” method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to the studied equations in order to obtain an efficient modelling of Soret effect and adsorption in a porous medium at a macroscopic scale.
LA - eng
KW - system of nonlinear parabolic equations; Soret effect; separation by thermal diffusion; mixed finite element; finite volume scheme; homogenization; two scale convergence; Schauder-Tikhonov fixed point theorem; mixed finite volume method
UR - http://eudml.org/doc/194059
ER -

References

top
  1. [1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. Zbl0770.35005
  2. [2] G. Allaire, Homogénéisation des équations de Stokes et de Navier-Stokes. Thèse de doctorat de l’Université Paris VI (1989). 
  3. [3] G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical of Flow through Porous Media, A. bourgeat et al. Eds., World scientific Pub., Singapore (1995). Zbl0822.35011
  4. [4] S.N. Antontsev and A.V. Domansky, Uniqueness generalizated solutions of degenerate problem two phase filtration. Numerical methods mechanics in continuum medium, Collection Sciences Research, Sbornik 15 (1984) 15–28 (in Russian). Zbl0585.76143
  5. [5] S.N. Antontsev, A.M. Meirmanov and V.V. Yurinsky, Homogenization of Stokes-Type equations with variable viscosity. Siberian Adv. Math. 8 Allerton Press, New York (1998). Zbl0920.35106MR1650518
  6. [6] P. Bia and M. Combarnous, Les méthodes thermiques de production des hydrocarbures. Chap. 1: Transfert de chaleur et de masse. Revue de l’Institut Français du Pétrole, mai-juin (1975) 359–395. 
  7. [7] H. Brezis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1983). Zbl0511.46001MR697382
  8. [8] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. 9 Vols., Masson, Paris (1985). Zbl0708.35001
  9. [9] J.I. Díaz, Two problems in homogenization of porous media. Preprint, Université Complutense de Madrid, MA-UCM 1999–25, (1999). Zbl0942.35021
  10. [10] J.I. Díaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion. Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 11 (1998) 59–82. Zbl0916.35087
  11. [11] J.I. Díaz, G. Galiano and A. Jungel, On a quasilinear degenerated system arising in semiconductors theory. Part I: existence and uniqueness of solutions. Centrum voor Wiskunde en Informatica, Modelling, Analysis and Simulation. Report MAS-R9723, (1997). 
  12. [12] G. Duvaut and J.L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris (1972). Zbl0298.73001MR464857
  13. [13] G. Gagneux, Sur l’analyse de modèles de la filtration diphasique en milieu poreux, in Equations aux dérivées partielles et applications. Articles dédiés à J.L. Lions. Gauthier-Villars, Paris (1998) 527–540. Zbl0914.35067
  14. [14] G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière. Collection Mathématiques et Applications, Springer-Verlag, Heidelberg 22 (1996). Zbl0842.35126
  15. [15] U. Hornung, Homogenization and porous media. Interdisciplinary Appl. Math., No. 6, Springer, New York (1997). Zbl0872.35002MR1434315
  16. [16] U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differential Equations 92 (1991) 199–225. Zbl0731.76080
  17. [17] F. James, M. Sepulveda and P. Valentin, Modèle de thermodynamique statistique pour un isotherme d’équilibre diphasique multicomposant. Rapport de recherche du centre de mathématiques appliquées de l’École Polytechnique No. 223 (1990). 
  18. [18] J.L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968). Zbl0179.41801MR244606
  19. [19] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris (1968). Zbl0165.10801MR247243
  20. [20] F. Montel, Importance de la thermodiffusion en exploration et production pétrolières. Entropie No. 184/185 (1994) 86–93. 
  21. [21] R.A. Nicolaïdes, Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349–357. Zbl0485.65049
  22. [22] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical aspects of the finite element method, Lect. Notes Math. 606, Springer, Berlin (1977) 292–315. Zbl0362.65089
  23. [23] J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods. Handbook of numerical analysis, finite element methods, Vol. II, finite element methods (Part. 1), Ciarlet P-G., Lions J-L. Eds. North Holland, Amsterdam (1991) 523–639 . Zbl0875.65090
  24. [24] E. Sanchez-Palencia, Non-homogeneous media and vibration theory. Springer-Verlag, Berlin (1980). Zbl0432.70002MR578345
  25. [25] D. Serre, Systèmes de lois de conservation. Tome 1, Fondations. Diderot Éditeur, Arts et Sciences, Paris (1996) 66–68. 
  26. [26] J-M. Thomas and D. Trujillo, Mixed finite volume methods, Intermat. J. Numer. Methods Engrg. 46 (1999) 1351–1366. Zbl0948.65125

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.