Displaying similar documents to “Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena : local study and upscaling process”

A modal synthesis method for the elastoacoustic vibration problem

Alfredo Bermúdez, Luis Hervella-Nieto, Rodolfo Rodríguez (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions...

Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part II: Mixed-hybrid finite element solution

Kamyar Malakpoor, Enrique F. Kaasschieter, Jacques M. Huyghe (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, (1997) 793–802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modeling of incompressible charged porous media. (2007) 661–678]. This theory results in a coupled system of nonlinear parabolic differential equations together with an...

Mixed finite element approximation for a coupled petroleum reservoir model

Mohamed Amara, Daniela Capatina-Papaghiuc, Bertrand Denel, Peppino Terpolilli (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we are interested in the modelling and the finite element approximation of a petroleum reservoir, in axisymmetric form. The flow in the porous medium is governed by the Darcy-Forchheimer equation coupled with a rather exhaustive energy equation. The semi-discretized problem is put under a mixed variational formulation, whose approximation is achieved by means of conservative Raviart-Thomas elements for the fluxes and of piecewise constant elements for the pressure and...

Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case

Jean Luc Guermond, Peter D. Minev (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge...

Mixed methods for the approximation of liquid crystal flows

Chun Liu, Noel J. Walkington (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The numerical solution of the flow of a liquid crystal governed by a particular instance of the Ericksen–Leslie equations is considered. Convergence results for this system rely crucially upon energy estimates which involve H 2 ( Ω ) norms of the director field. We show how a mixed method may be used to eliminate the need for Hermite finite elements and establish convergence of the method.