# The Mortar method in the wavelet context

• Volume: 35, Issue: 4, page 647-673
• ISSN: 0764-583X

top

## Abstract

top
This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method, such multiplier spaces are not a subset of the space of traces of interior functions, but rather of their duals. For the resulting method, we provide with an error estimate, which is optimal in the geometrically conforming case.

## How to cite

top

Bertoluzza, Silvia, and Perrier, Valérie. "The Mortar method in the wavelet context." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.4 (2001): 647-673. <http://eudml.org/doc/194067>.

@article{Bertoluzza2001,
abstract = {This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method, such multiplier spaces are not a subset of the space of traces of interior functions, but rather of their duals. For the resulting method, we provide with an error estimate, which is optimal in the geometrically conforming case.},
author = {Bertoluzza, Silvia, Perrier, Valérie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {domain decomposition; mortar method; wavelet approximation; stability; convergence; error estimate},
language = {eng},
number = {4},
pages = {647-673},
publisher = {EDP-Sciences},
title = {The Mortar method in the wavelet context},
url = {http://eudml.org/doc/194067},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Bertoluzza, Silvia
AU - Perrier, Valérie
TI - The Mortar method in the wavelet context
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 4
SP - 647
EP - 673
AB - This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method, such multiplier spaces are not a subset of the space of traces of interior functions, but rather of their duals. For the resulting method, we provide with an error estimate, which is optimal in the geometrically conforming case.
LA - eng
KW - domain decomposition; mortar method; wavelet approximation; stability; convergence; error estimate
UR - http://eudml.org/doc/194067
ER -

## References

top
1. [1] Y. Achdou, G. Abdoulaev, Y. Kutznetsov and C. Prud’homme, On the parallel inplementation of the mortar element method. ESAIM: M2AN 33 (1999) 245–259. Zbl0946.65111
2. [2] L. Anderson, N. Hall, B. Jawerth and G. Peters, Wavelets on closed subsets on the real line, in Topics in the theory and applications of wavelets, L.L. Schumaker and G. Webb, Eds., Academic Press, Boston (1993) 1–61. Zbl0808.42019
3. [3] F. Ben Belgacem, The mortar finite element method with Lagrange multiplier. Numer. Math. 84 (1999) 173–197. Zbl0944.65114
4. [4] F. Ben Belgacem, A. Buffa and Y. Maday, The mortar element method for 3D Maxwell’s equations. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 903–908. Zbl0941.65118
5. [5] F. Ben Belgacem and Y. Maday, Non conforming spectral method for second order elliptic problems in 3D. East-West J. Numer. Math. 4 (1994) 235–251. Zbl0835.65129
6. [6] C. Bernardi, Y. Maday, C. Mavripilis and A.T. Patera, The mortar element method applied to spectral discretizations, in Finite element analysis in fluids. Proc. of the seventh international conference on finite element methods in flow problems, T. Chung and G. Karr, Eds., UAH Press (1989). Zbl0704.65077
7. [7] C. Bernardi, Y. Maday and A.T. Patera, Domain decomposition by the mortar element method, in Asymptotic and numerical methods for partial differential equations with critical parameters, H.G. Kaper and M. Garbey, Eds., N.A.T.O. ASI Ser. C 384 . Zbl0799.65124
8. [8] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, Collège de France Seminar XI, H. Brezis and J.L.Lions, Eds. (1994) 13–51. Zbl0797.65094
9. [9] S. Bertoluzza, An adaptive wavelet collocation method based on interpolating wavelets, in Multiscale wavelet methods for partial differential equations. W. Dahmen, A.J. Kurdila and P. Oswald, Eds., Academic Press 6 (1997) 109–135.
10. [10] S. Bertoluzza and V. Perrier, The mortar method in the wavelet context. Technical Report 99-17, LAGA, Université Paris 13 (1999). Zbl0995.65131
11. [11] S. Bertoluzza and P. Pietra, Space frequency adaptive approximation for quantum hydrodynamic models. Transport Theory Statist. Phys. 28 (2000) 375–395. Zbl0971.76105
12. [12] D. Braess and W. Dahmen, Stability estimate of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6 (1998) 249–264. Zbl0922.65072
13. [13] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
14. [14] C. Canuto and A. Tabacco, Multilevel decomposition of functional spaces. J. Fourier Anal. Appl. 3 (1997) 715–742. Zbl0896.42023
15. [15] C. Canuto, A. Tabacco and K. Urban, The wavelet element method. Part I: Construction and analysis. Appl. Comput. Harmon. Anal. ACHA 6 (1999) 1–52. Zbl0949.42024
16. [16] L. Cazabeau, C. Lacour and Y. Maday, Numerical quadratures and mortar methods, in Computational Sciences for the 21st Century, Bristeau $et\phantom{\rule{3.33333pt}{0ex}}al.$, Eds., John Wiley Sons, New York (1997) 119–128. Zbl0911.65117
17. [17] P. Charton and V. Perrier, A pseudo-wavelet scheme for the two-dimensional Navier-Stokes equation. Comput. Appl. Math. 15 (1996) 139–160. Zbl0868.76064
18. [18] G. Chiavassa and J. Liandrat, On the effective construction of compactly supported wavelets satisfying homogeneous boundary conditions on the interval. Appl. Comput. Harmon. Anal. ACHA 4 (1997) 62–73. Zbl0868.42014
19. [19] A. Cohen, I. Daubechies and P. Vial, Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. ACHA 1 (1993) 54–81. Zbl0795.42018
20. [20] A. Cohen and R. Masson, Wavelet methods for second order elliptic problems, preconditioning and adaptivity. SIAM J. Sci. Comput. 21 (1999) 1006–1026. Zbl0981.65132
21. [21] A. Cohen and R. Masson, Wavelet adaptive method for second order elliptic problems. boundary conditions and domain decomposition. Numer. Math. 86 (1999) 193–238. Zbl0961.65106
22. [22] S. Dahlke, W. Dahmen ans R. Hochmut and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21–48. Zbl0872.65098
23. [23] W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341–361. Zbl0919.46006
24. [24] W. Dahmen and A. Kunoth, Multilevel preconditioning. Numer. Math. 63 (1992) 315–344. Zbl0757.65031
25. [25] W. Dahmen, A. Kunoth and K. Urban, Biorthogonal spline-wavelets on the interval – stability and moment condition. Appl. Comput. Harmon. Anal. ACHA 6 (1999) 132–196. Zbl0922.42021
26. [26] W. Dahmen and R. Schneider, Composite wavelet bases for operator equations. Math. Comp. 68 (1999) 1533–1567. Zbl0932.65148
27. [27] I. Daubechies, Ten lectures on wavelets, in CBMS-NSF Regional Conference Series in Applied Mathematics 61. SIAM, Philadelphia (1992). Zbl0776.42018MR1162107
28. [28] S. Jaffard, Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal. 29 (1992) 965–986. Zbl0761.65083
29. [29] Y. Maday, V. Perrier and J.C. Ravel, Adaptivité dynamique sur bases d’ondelettes pour l’approximation d’équations aux dérivées partielles. C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) 405–410. Zbl0709.65099
30. [30] R. Masson, Biorthogonal spline wavelets on the interval for the resolution of boundary problems. M${}^{\phantom{\rule{0.166667em}{0ex}}3}$AS (Math. Models Methods Appl. Sci.) 6 (1996) 749–791. Zbl0924.65100
31. [31] Y. Meyer, Ondelettes et opérateurs. Hermann, Paris (1990). Zbl0694.41037MR1085487
32. [32] P. Monasse and V. Perrier, Orthonormal wavelet bases adapted for partial differential equations with boundary conditions. SIAM J. Math. Anal. 29 (1998) 1040–1065. Zbl0921.35036
33. [33] C. Prud’homme, A strategy for the resolution of the tridimensional incompressible Navier-Stokes equations, in Méthodes itératives de décomposition de domaines et communications en calcul parallèle. Calcul. Parallèles Réseaux Syst. Répartis 10 Hermès (1998) 371–380.
34. [34] S. Grivet Talocia and A. Tabacco, Wavelets on the interval with optimal localization. M${}^{\phantom{\rule{0.166667em}{0ex}}3}$AS (Math. Models Methods Appl. Sci.) 10 (2000) 441–462. Zbl1012.42026
35. [35] H. Triebel, Interpolation theory, function spaces, differential operators. North Holland-Elsevier Science Publishers, Amsterdam (1978). Zbl0387.46032MR503903
36. [36] B. Wohlmut, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989–1012. Zbl0974.65105

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.