On fully practical finite element approximations of degenerate Cahn-Hilliard systems
John W. Barrett; James F. Blowey; Harald Garcke
- Volume: 35, Issue: 4, page 713-748
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBarrett, John W., Blowey, James F., and Garcke, Harald. "On fully practical finite element approximations of degenerate Cahn-Hilliard systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.4 (2001): 713-748. <http://eudml.org/doc/194070>.
@article{Barrett2001,
abstract = {We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments with three components in one and two space dimensions are presented.},
author = {Barrett, John W., Blowey, James F., Garcke, Harald},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {phase separation; multi-component systems; degenerate parabolic systems of fourth order; finite element method; convergence analysis; degenerate mobility matrix},
language = {eng},
number = {4},
pages = {713-748},
publisher = {EDP-Sciences},
title = {On fully practical finite element approximations of degenerate Cahn-Hilliard systems},
url = {http://eudml.org/doc/194070},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Barrett, John W.
AU - Blowey, James F.
AU - Garcke, Harald
TI - On fully practical finite element approximations of degenerate Cahn-Hilliard systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 4
SP - 713
EP - 748
AB - We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments with three components in one and two space dimensions are presented.
LA - eng
KW - phase separation; multi-component systems; degenerate parabolic systems of fourth order; finite element method; convergence analysis; degenerate mobility matrix
UR - http://eudml.org/doc/194070
ER -
References
top- [1] R.A. Adams and J. Fournier, Cone conditions and properties of Sobolev spaces. J. Math. Anal. Appl. 61 (1977) 713–734. Zbl0385.46024
- [2] J.W. Barrett and J.F. Blowey, An error bound for the finite element approximation of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 16 (1996) 257–287. Zbl0849.65069
- [3] J.W. Barrett and J.F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Numer. Math. 77 (1997) 1–34. Zbl0882.65129
- [4] J.W. Barrett and J.F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. IMA J. Numer. Anal. 18 (1998) 287–328. Zbl0899.76262
- [5] J.W. Barrett and J.F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy and a concentration dependent mobility matrix. MAS 9 (1999) 627–663. Zbl0936.65120
- [6] J.W. Barrett and J.F. Blowey, An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. Numer. Math. 88 (2001) 255–297. Zbl0990.65105
- [7] J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80 (1998) 525–556. Zbl0913.65084
- [8] J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286–318. Zbl0947.65109
- [9] J.F. Blowey, M.I.M. Copetti and C.M. Elliott, The numerical analysis of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 16 (1996) 111–139. Zbl0857.65137
- [10] J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, part i: Mathematical analysis. European J. Appl. Math. 2 (1991) 233–279. Zbl0797.35172
- [11] J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, part ii: Numerical analysis. European J. Appl. Math. 3 (1992) 147–179. Zbl0810.35158
- [12] L. Bronsard, H. Garcke and B. Stoth, A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem, in Proc. Roy. Soc. Edinburgh 128 A (1998) 481–506. Zbl0924.35199
- [13] J.F. Cialvaldini, Analyse numérique d’un problème de Stefan à deux phases par une méthode d’éléments finis. SIAM J. Numer. Anal. 12 (1975) 464–487. Zbl0272.65101
- [14] P.G. Ciarlet, Introduction to numerical linear algebra and optimisation. C.U.P., Cambridge (1988). Zbl0672.65001MR1015713
- [15] D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions – I. Stability criteria. J. Phys. Chem. Solids 33 (1972) 297–310.
- [16] P.G. de Gennes, Dynamics of fluctuations and spinodal decomposition in polymer blends. J. Chem. Phys. 72 (1980) 4756–4763. Zbl1110.82310
- [17] C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase transitions, in Mathematical models for phase change problems, J.F. Rodrigues Ed., Internat. Ser. Numer. Math. 88, Birkhäuser-Verlag, Basel (1989) 35–73. Zbl0692.73003
- [18] C.M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (1996) 404–423. Zbl0856.35071
- [19] C.M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Physica D 109 (1997) 242–256. Zbl0925.35087
- [20] C.M. Elliott and S. Luckhaus, A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy. SFB256 University Bonn, Preprint 195 (1991).
- [21] D.J. Eyre, Systems of Cahn-Hilliard equations. SIAM J. Appl. Math. 53 (1993) 1686–1712. Zbl0853.73060
- [22] H. Garcke, B. Nestler and B. Stoth, Anisotropy in multi phase systems: a phase field approach. Interfaces Free Bound. 1 (1999) 175–198. Zbl0959.35169
- [23] H. Garcke and A. Novick-Cohen, A singular limit for a system of degenerate Cahn-Hilliard equations. Adv. Diff. Eq. 5 (2000) 401–434. Zbl0988.35019
- [24] G. Grün and M. Rumpf, Nonnegativity preserving numerical schemes for the thin film equation. Numer. Math. 87 (2000) 113–152. Zbl0988.76056
- [25] K. Ito and Y. Kohsaka, Three-phase boundary motion by surface diffusion: stability of a mirror symmetric stationary solution. Interfaces Free Bound. 3 (2001) 45–80. Zbl0972.35165
- [26] P.L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16 (1979) 964–979. Zbl0426.65050
- [27] J.E. Morral and J.W. Cahn, Spinodal decomposition in ternary systems. Acta Metall. 19 (1971) 1037–1045.
- [28] A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modelling perspectives. Adv. Math. Sci. Appl. 8 (1998) 965–985. Zbl0917.35044
- [29] F. Otto and W. E, Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys. 107 (1997) 10177–10184. Zbl1110.76307
- [30] L. Zhornitskaya and A.L. Bertozzi, Positivity preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37 (2000) 523–555. Zbl0961.76060
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.