On the one-dimensional Boltzmann equation for granular flows
Dario Benedetto; Mario Pulvirenti
- Volume: 35, Issue: 5, page 899-905
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBenedetto, Dario, and Pulvirenti, Mario. "On the one-dimensional Boltzmann equation for granular flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.5 (2001): 899-905. <http://eudml.org/doc/194079>.
@article{Benedetto2001,
abstract = {We consider a Boltzmann equation for inelastic particles on the line and prove existence and uniqueness for the solutions.},
author = {Benedetto, Dario, Pulvirenti, Mario},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {inelastic collisions; granular media; Boltzmann equation},
language = {eng},
number = {5},
pages = {899-905},
publisher = {EDP-Sciences},
title = {On the one-dimensional Boltzmann equation for granular flows},
url = {http://eudml.org/doc/194079},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Benedetto, Dario
AU - Pulvirenti, Mario
TI - On the one-dimensional Boltzmann equation for granular flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 5
SP - 899
EP - 905
AB - We consider a Boltzmann equation for inelastic particles on the line and prove existence and uniqueness for the solutions.
LA - eng
KW - inelastic collisions; granular media; Boltzmann equation
UR - http://eudml.org/doc/194079
ER -
References
top- [1] L. Arkeryd, Existence theorems for certain kinetic equations and large data. Arch. Rational Mech. Anal. 103 (1988) 139–149. Zbl0654.76073
- [2] D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for one-dimensional granular media. RAIRO Modél. Math. Anal. Numér. 31 (1997) 615–641. Zbl0888.73006
- [3] D. Benedetto, E. Caglioti and M. Pulvirenti, A one-dimensional Boltzmann equation with inelastic collisions. Rend. Sem. Mat. Fis. Milano LXVII (1997) 169–179. Zbl1011.82019
- [4] J.-M. Bony, Solutions globales bornées pour les modèles discrets de l’équation de Boltzmann en dimension 1 d’espace, in Actes Journées Équ. Dériv. Part. 16, St.-Jean-de-Monts (1987).
- [5] L. Tartar, Existence globale pour un système hyperbolique semi-linéaire de la théorie cinétique des gaz, in Séminaire Goulaouic-Schwartz 1975-76, Équat. Dériv. Part. Anal. Fonct., Exposé I, École Polytechnique, Palaiseau (1976). Zbl0336.35069MR466992
- [6] G. Toscani, One-dimensional kinetic models of granular flows. Math. Model. Numer. Anal. 34 (2000) 1277–1291. Zbl0981.76098
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.