Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

On the Plasma-Charge problem

Mario Pulvirenti

Séminaire Équations aux dérivées partielles

This short report is a review on recent results of S. Caprino, C. Marchioro, E. Miot and the author on the initial value problem associated to the evolution of a continuous distribution of charges (plasma) in presence of a finite number of point charges.

On the Singularities of the Newtonian two dimensional N-body Problem

Carlo MarchioroMario Pulvirenti — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera un sistema bidimensionale di N particelle interagenti tramite un potenziale di Newton o di Coulomb e si mostra che l’insieme delle condizioni iniziali che in un tempo finito possono condurre a delle singolarità possiede misura di Lebesgue nulla.

A kinetic equation for granular media

Dario BenedettoEmanuele CagliotiMario Pulvirenti — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

In this short note we correct a conceptual error in the heuristic derivation of a kinetic equation used for the description of a one-dimensional granular medium in the so called quasi-elastic limit, presented by the same authors in reference[1]. The equation we derived is however correct so that, the rigorous analysis on this equation, which constituted the main purpose of that paper, remains unchanged.

On the motion of a body in thermal equilibrium immersed in a perfect gas

Kazuo AokiGuido CavallaroCarlo MarchioroMario Pulvirenti — 2008

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a body immersed in a perfect gas and moving under the action of a constant force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the approach of the body velocity to the limiting velocity V and prove that, under suitable smallness assumptions, the approach...

Page 1

Download Results (CSV)