On the analysis of Bérenger's Perfectly Matched Layers for Maxwell's equations
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 1, page 87-119
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBécache, Eliane, and Joly, Patrick. "On the analysis of Bérenger's Perfectly Matched Layers for Maxwell's equations." ESAIM: Mathematical Modelling and Numerical Analysis 36.1 (2010): 87-119. <http://eudml.org/doc/194098>.
@article{Bécache2010,
abstract = {
In this work, we investigate the Perfectly
Matched Layers (PML)
introduced by Bérenger [3] for designing
efficient numerical absorbing
layers in electromagnetism.
We make a mathematical analysis of this model, first via a modal
analysis with standard Fourier techniques, then via energy
techniques. We obtain uniform in time stability results (that make
precise some results known in the literature) and state some energy
decay results that illustrate the absorbing properties of the
model. This last technique allows us to prove the stability of the
Yee's scheme for discretizing PML's.
},
author = {Bécache, Eliane, Joly, Patrick},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Absorbing layers; PML; Maxwell's equations; stability;
hyperbolic systems; Fourier analysis; energy techniques; Yee's scheme.; absorbing layers; hyperbolic systems; Yee's scheme},
language = {eng},
month = {3},
number = {1},
pages = {87-119},
publisher = {EDP Sciences},
title = {On the analysis of Bérenger's Perfectly Matched Layers for Maxwell's equations},
url = {http://eudml.org/doc/194098},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Bécache, Eliane
AU - Joly, Patrick
TI - On the analysis of Bérenger's Perfectly Matched Layers for Maxwell's equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 1
SP - 87
EP - 119
AB -
In this work, we investigate the Perfectly
Matched Layers (PML)
introduced by Bérenger [3] for designing
efficient numerical absorbing
layers in electromagnetism.
We make a mathematical analysis of this model, first via a modal
analysis with standard Fourier techniques, then via energy
techniques. We obtain uniform in time stability results (that make
precise some results known in the literature) and state some energy
decay results that illustrate the absorbing properties of the
model. This last technique allows us to prove the stability of the
Yee's scheme for discretizing PML's.
LA - eng
KW - Absorbing layers; PML; Maxwell's equations; stability;
hyperbolic systems; Fourier analysis; energy techniques; Yee's scheme.; absorbing layers; hyperbolic systems; Yee's scheme
UR - http://eudml.org/doc/194098
ER -
References
top- S. Abarbanel and D. Gottlieb, A mathematical analysis of the PML method. J. Comput. Phys. 134 (1997) 357-363.
- S. Abarbanel and D. Gottlieb, On the construction and analysis of absorbing layers in CEM. Appl. Numer. Math.27 (1998) 331-340.
- J.P. Bérenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys.114 (1994) 185-200.
- F. Collino and P. Monk, Conditions et couches absorbantes pour les équations de Maxwell, in G. Cohen and P. Joly, Aspects récents en méthodes numériques pour les équations de Maxwell, Eds. École des Ondes, Chapter 4, INRIA, Rocquencourt (1998).
- J.W. Goodrich and T. Hagstrom, A comparison of two accurate boundary treatments for computational aeroacoustics. AIAA Paper-1585 (1997).
- J.S. Hesthaven, On the Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations. J. Comput. Phys.142 (1998) 129-147.
- F.Q. Hu, On absorbing boundary conditions for linearized euler equations by a perfectly matched layer. J. Comput. Phys.129 (1996) 201-219.
- T. Kato, Perturbation Theory for Linear Operators. Springer (1995).
- H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, in Pure Appl. Math.136, Academic Press, Boston, USA (1989).
- J. Métral and O. Vacus, Caractère bien posé du problème de Cauchy pour le système de Bérenger. C.R. Acad. Sci. I Math. 10 (1999) 847-852.
- P.G. Petropoulos, L. Zhao and A.C. Cangellaris, A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell's equations with high-order staggered finite difference schemes. J. Comput. Phys.139 (1998) 184-208.
- A.N. Rahmouni, Des modèles PML bien posés pour divers problèmes hyperboliques. Ph.D. thesis, Université Paris Nord-Paris XIII (2000).
- Allen Taflove, Computational electrodynamics: the finite-difference time-domain method. Artech House (1995).
- E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math.27 (1998) 533-557.
- L. Zhao and A.C. Cangellaris, A General Approach for the Development of Unsplit-Field Time-Domain Implementations of Perfectly Matched Layers for FDTD Grid Truncation. IEEE Microwave and Guided Letters6 May 1996.
- R.W. Ziolkowski, Time-derivative lorentz material model-based absorbing boundary condition. IEEE Trans. Antennas Propagation45 (1997) 1530-1535.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.