Numerical simulation of a point-source initiated flame ball with heat losses
Jacques Audounet; Jean-Michel Roquejoffre; Hélène Rouzaud
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 2, page 273-291
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topAudounet, Jacques, Roquejoffre, Jean-Michel, and Rouzaud, Hélène. "Numerical simulation of a point-source initiated flame ball with heat losses." ESAIM: Mathematical Modelling and Numerical Analysis 36.2 (2010): 273-291. <http://eudml.org/doc/194104>.
@article{Audounet2010,
abstract = {
This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.
},
author = {Audounet, Jacques, Roquejoffre, Jean-Michel, Rouzaud, Hélène},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Flame ball; integro-differential equation; time discretisation; numerical quenching.; fractional derivative; time discretization; numerical quenching},
language = {eng},
month = {3},
number = {2},
pages = {273-291},
publisher = {EDP Sciences},
title = {Numerical simulation of a point-source initiated flame ball with heat losses},
url = {http://eudml.org/doc/194104},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Audounet, Jacques
AU - Roquejoffre, Jean-Michel
AU - Rouzaud, Hélène
TI - Numerical simulation of a point-source initiated flame ball with heat losses
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 2
SP - 273
EP - 291
AB -
This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.
LA - eng
KW - Flame ball; integro-differential equation; time discretisation; numerical quenching.; fractional derivative; time discretization; numerical quenching
UR - http://eudml.org/doc/194104
ER -
References
top- J. Audounet, V. Giovangigli and J.-M. Roquejoffre, A threshold phenomenon in the propagation of a point source initiated flame. Phys. D121 (1998) 295-316.
- J. Audounet and J.-M. Roquejoffre, An integral equation describing the propagation of a point source initiated flame: Asymptotics and numerical analysis. Systèmes différentiels fractionnaires: Modèles, Méthodes et Applications, Matignon & Montseny Eds, ESAIM Proc.5 (1998).
- C. Bolley and M. Crouzeix, Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. RAIRO Anal. Numér.3 (1978) 237-245.
- H. Brunner, A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math.3 (1982) 213-229.
- J. Buckmaster, G. Joulin and P. Ronney, The structure and stability of nonadiabatic flame balls. Combust. Flame79 (1990) 381-392.
- J. Buckmaster, G. Joulin and P. Ronney, The structure and stability of nonadiabatic flame balls. II. Effects on far-field losses. Combust. Flame84 (1991) 411-422.
- R. Gorenflo and S. Vessella, Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991).
- G. Joulin, Point source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech.43 (1985) 99-113.
- O.A. Ladyzhenskaya, N.N. Uraltseva and S.N. Solonnikov, Linear and quasilinear equations of parabolic type. Transl. Math. Monogr.23 (1968).
- C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal.3 (1986) 704-719.
- C. Lubich and A. Ostermann, Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal.15 (1995) 555-583.
- H. Rouzaud, Dynamique d'un modèle intégro-différentiel de flammes sphériques avec pertes de chaleur. C.R. Acad. Sci. Paris Sér. 1332 (2001) 1083-1086.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.