Stabilization of Berger–Timoshenko's equation as limit of the uniform stabilization of the von Kármán system of beams and plates
G. Perla Menzala; Ademir F. Pazoto; Enrique Zuazua
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 4, page 657-691
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- J.M. Ball, Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl.41 (1973) 69-90.
- Ph. Ciarlet, Mathematical elasticity, Vol. II. Theory of plates. Stud. Math. Appl. 27 (1997).
- A. Cimetière, G. Geymonat, H. Le Dret, A. Raoult and Z. Tutek, Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elasticity19 (1988) 111-161.
- R.W. Dickey, Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl.29 (1970) 443-454.
- A. Haraux and E. Zuazua, Decay estimates for some damped hyperbolic equations. Arch. Rational Mech. Anal.100 (1998) 191-206.
- V.A. Kondratiev and O.A. Oleinik, Hardy's and Korn's type inequalities and their applications. Rendiconti di Matematica VII (1990) 641-666.
- V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9)69 (1990) 33-55.
- J.E. Lagnese, Boundary stabilization of thin plates. SIAM Stud. Appl. Math., Philadelphia (1989).
- J.E. Lagnese, Recent progress in exact boundary controllability and uniform stability of thin beams and plates. Lect. Notes in Pure and Appl. Math. 128, Dekker, New York (1991) 61-111.
- I. Lasiecka, Weak, classical and intermediate solutions to full von Kármán system of dynamic nonlinear elasticity. Appl. Anal.68 (1998) 121-145.
- J.E. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differential Equations91 (1991) 355-388.
- J.L. Lions, Perturbations singulières dans les problèmes aux limites et contrôle optimal. Springer-Verlag, Berlin, in Lectures Notes in Math. 323 (1973).
- A.H. Nayfeh and D.T. Mook, Nonlinear oscillations. Wiley-Interscience, New York (1989).
- A.F. Pazoto and G.P. Menzala, Uniform stabilization of a nonlinear beam model with thermal effects and nonlinear boundary dissipation. Funkcial. Ekvac.43 (2000) 339-360.
- J.P. Puel and M. Tucsnak, Boundary stabilization for the von Karman equations. SIAM J. Control Optim. 33 (1995) 255-273
- J.P. Puel and M. Tucsnak, Global existence of the full von Kármán system. Appl. Math. Optim.34 (1996) 139-160.
- G.P. Menzala and E. Zuazua, The beam equation as a limit of 1-D nonlinear von Kármán model. Appl. Math. Lett.12 (1999) 47-52.
- G.P. Menzala and E. Zuazua, Timoshenko's beam equation as limit of a nonlinear one-dimensional von Kármán system. Proc. Roy. Soc. Edinburg Sect. A130 (2000) 855-875.
- G.P. Menzala and E. Zuazua, Timoshenko's plate equation as a singular limit of the dynamical von Kármán system. J. Math. Pures Appl. (9)79 (2000) 73-94.
- V.I. Sedenko, On the uniqueness theorem for generalized solutions of initial-boundary problems for the Marguerre-Vlasov vibrations of shallow shells with clamped boundary conditions. Appl. Math. Optim.39 (1999) 309-326.
- J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (4) CXLVI (1987) 65-96.
- L. Trabucho de Campos and J. Via no, Mathematical modelling of rods. Handbook of numerical analysis, Vol. IV, North Holland, Amsterdam (1996) 487-974.
- E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems. Asymptot. Anal.1 (1988) 1-28.