Numerical Study of Two Sparse AMG-methods
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 1, page 133-142
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMartikainen, Janne. "Numerical Study of Two Sparse AMG-methods." ESAIM: Mathematical Modelling and Numerical Analysis 37.1 (2010): 133-142. <http://eudml.org/doc/194149>.
@article{Martikainen2010,
abstract = {
A sparse algebraic multigrid method is studied as a cheap and accurate
way to compute approximations of Schur complements of matrices
arising from the discretization of some symmetric and positive definite
partial differential operators. The construction of such a multigrid is
discussed and numerical experiments are used to verify the properties
of the method.
},
author = {Martikainen, Janne},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Algebraic multigrid; Schur complement; Lagrange multipliers.; algebraic multigrid; Lagrange multipliers; Laplace equation; finite element; numerical experiments; preconditioning; unstructured grids},
language = {eng},
month = {3},
number = {1},
pages = {133-142},
publisher = {EDP Sciences},
title = {Numerical Study of Two Sparse AMG-methods},
url = {http://eudml.org/doc/194149},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Martikainen, Janne
TI - Numerical Study of Two Sparse AMG-methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 37
IS - 1
SP - 133
EP - 142
AB -
A sparse algebraic multigrid method is studied as a cheap and accurate
way to compute approximations of Schur complements of matrices
arising from the discretization of some symmetric and positive definite
partial differential operators. The construction of such a multigrid is
discussed and numerical experiments are used to verify the properties
of the method.
LA - eng
KW - Algebraic multigrid; Schur complement; Lagrange multipliers.; algebraic multigrid; Lagrange multipliers; Laplace equation; finite element; numerical experiments; preconditioning; unstructured grids
UR - http://eudml.org/doc/194149
ER -
References
top- I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1972/73) 179-192.
- C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI, Paris (1989-1991) 13-51. Longman Sci. Tech., Harlow (1994).
- J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I. Math. Comp.47 (1986) 103-134.
- J.H. Bramble, J.E. Pasciak and Jinchao Xu, Parallel multilevel preconditioners. Math. Comp.55 (1990) 1-22.
- Qianshun Chang, Yau Shu Wong and Hanqing Fu, On the algebraic multigrid method. J. Comput. Phys.125 (1996) 279-292.
- M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math.39 (1982) 51-64.
- R. Glowinski, T. Hesla, D.D. Joseph, T.-W. Pan and J. Periaux, Distributed Lagrange multiplier methods for particulate flows, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Periaux and M.F. Wheeler Eds., Wiley (1997) 270-279.
- R. Glowinski, Tsorng-Whay Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg.111 (1994) 283-303.
- G.H. Golub and D. Mayers, The use of preconditioning over irregular regions, in Computing methods in applied sciences and engineering VI, Versailles (1983) 3-14. North-Holland, Amsterdam (1984).
- A. Greenbaum, Iterative methods for solving linear systems. SIAM, Philadelphia, PA (1997).
- F. Kickinger, Algebraic multi-grid for discrete elliptic second-order problems, in Multigrid methods V, Stuttgart (1996) 157-172. Springer, Berlin (1998).
- Yu.A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian J. Numer. Anal. Math. Modelling10 (1995) 187-211.
- Yu.A. Kuznetsov, Overlapping domain decomposition with non-matching grids. East-West J. Numer. Math.6 (1998) 299-308.
- R.A.E. Mäkinen, T. Rossi and J. Toivanen, A moving mesh fictitious domain approach for shape optimization problems. ESAIM: M2AN34 (2000) 31-45.
- J. Martikainen, T. Rossi and J. Toivanen, Multilevel preconditioners for Lagrange multipliers in domain imbedding. Electron. Trans. Numer. Anal. (to appear).
- G. Meurant, A multilevel AINV preconditioner. Numer. Algorithms29 (2002) 107-129.
- J.W. Ruge and K. Stüben, Algebraic multigrid. SIAM, Philadelphia, PA, Multigrid methods (1987) 73-130.
- D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal.31 (1994) 1352-1367.
- C.H. Tong, T.F. Chan, and C.-C. Jay Kuo, A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Statist. Comput.12 (1991) 1486-1495.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.