Characterization of collision kernels
Laurent Desvillettes; Francesco Salvarani
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 2, page 345-355
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topDesvillettes, Laurent, and Salvarani, Francesco. "Characterization of collision kernels." ESAIM: Mathematical Modelling and Numerical Analysis 37.2 (2010): 345-355. <http://eudml.org/doc/194167>.
@article{Desvillettes2010,
abstract = {
In this paper we show how abstract physical requirements are enough
to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.
},
author = {Desvillettes, Laurent, Salvarani, Francesco},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Boltzmann; Landau; collision kernels.; Boltzmann kernel; Landau kernel},
language = {eng},
month = {3},
number = {2},
pages = {345-355},
publisher = {EDP Sciences},
title = {Characterization of collision kernels},
url = {http://eudml.org/doc/194167},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Desvillettes, Laurent
AU - Salvarani, Francesco
TI - Characterization of collision kernels
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 37
IS - 2
SP - 345
EP - 355
AB -
In this paper we show how abstract physical requirements are enough
to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.
LA - eng
KW - Boltzmann; Landau; collision kernels.; Boltzmann kernel; Landau kernel
UR - http://eudml.org/doc/194167
ER -
References
top- R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal.152 (2000) 327-355.
- R. Alexandre and C. Villani, On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non linéaire.
- A.V. Bobylev, The Boltzmann equation and the group transformations. Math. Models Methods Appl. Sci.3 (1993) 443-476.
- C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases. Springer Verlag, New York (1994).
- L. Desvillettes, Boltzmann's kernel and the spatially homogeneous Boltzmann equation. Riv. Mat. Univ. Parma6 (2001) 1-22.
- L. Desvillettes and V. Ricci, A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions. J. Statist. Phys.104 (2001) 1173-1189.
- L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Comm. Partial Differential Equations25 (2000) 179-259.
- D. Dürr, S. Goldstein and J. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Comm. Math. Phys.113 (1987) 209-230.
- G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota interna No. 358, Istituto di Fisica, Università di Roma (1973).
- I.M. Guelfand and N.Y. Vilenkin, Les distributions, Tome IV, Applications de l'analyse harmonique. Dunod, Paris (1967).
- L. Hörmander, The analysis of linear partial differential operators I. Springer Verlag, Berlin (1983).
- R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Comm. Math. Phys.105 (1986) 189-203.
- R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for two- and three-dimensional rare gas in the vacuum: erratum and improved result. Comm. Math. Phys.121 (1989) 143-146.
- O. Lanford, Time evolution of large classical systems. Springer Verlag, Lecture Notes in Phys. 38 (1975) 1-111.
- R.W. Preisendorfer, A mathematical foundation for radiative transfer. J. Math. Mech.6 (1957) 685-730.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.