On the Landau approximation in plasma physics

R Alexandre; C Villani

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 1, page 61-95
  • ISSN: 0294-1449

How to cite

top

Alexandre, R, and Villani, C. "On the Landau approximation in plasma physics." Annales de l'I.H.P. Analyse non linéaire 21.1 (2004): 61-95. <http://eudml.org/doc/78612>.

@article{Alexandre2004,
author = {Alexandre, R, Villani, C},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Boltzmann equation; Landau equation; singularities},
language = {eng},
number = {1},
pages = {61-95},
publisher = {Elsevier},
title = {On the Landau approximation in plasma physics},
url = {http://eudml.org/doc/78612},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Alexandre, R
AU - Villani, C
TI - On the Landau approximation in plasma physics
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 1
SP - 61
EP - 95
LA - eng
KW - Boltzmann equation; Landau equation; singularities
UR - http://eudml.org/doc/78612
ER -

References

top
  1. [1] Alexandre R, Villani C, On the Boltzmann equation for long range interactions, Comm. Pure Appl. Math.55 (1) (2002) 30-70. Zbl1029.82036MR1857879
  2. [2] Alexandre R, Desvillettes L, Villani C, Wennberg B, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal.152 (4) (2000) 327-355. Zbl0968.76076MR1765272
  3. [3] Arsen'ev A, Buryak O, On the connection between a solution of the Boltzmann equation and a solution of the Landau–Fokker–Planck equation, Math. USSR-Sb.69 (2) (1991) 465-478. Zbl0724.35090MR1055522
  4. [4] Balescu R, Phys. Fluids3 (1960) 52. Zbl0095.43907MR128922
  5. [5] Balescu R, Statistical Mechanics of Charged Particles, Wiley Interscience, New York, 1963. Zbl0125.23106MR160579
  6. [6] Bogoljubov N, Problems of Dynamical Theory in Statistical Physics, in: de Boer J, Uhlenbeck G.E (Eds.), Studies in Statistical Mechanics, Interscience, New York, 1962. Zbl0116.45101
  7. [7] Cercignani C, The Boltzmann Equation and its Applications, Springer, 1988. Zbl0646.76001MR1313028
  8. [8] A. Decoster, in: Modeling of Collisions, by A. Decoster, P. Markowich and B. Perthame. Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 1998. Edited and with a foreword by P.A. Raviart. Zbl0924.76002
  9. [9] Degond P, Lucquin-Desreux B, The Fokker–Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci.2 (2) (1992) 167-182. Zbl0755.35091MR1167768
  10. [10] Delcroix J.L, Bers A, Physique des plasmas, 2 volumes, InterEditions/CNRS, 1994, (in French). 
  11. [11] Desvillettes L, On asymptotics of the Boltzmann equation when the collisions become grazing, Transp. Theory Stat. Phys.21 (3) (1992) 259-276. Zbl0769.76059MR1165528
  12. [12] Desvillettes L, Villani C, On the spatially homogeneous Landau equation with hard potentials. Part II. H-Theorem and applications, Comm. Partial Differential Equations25 (1–2) (2000) 261-298. Zbl0951.35130MR1737548
  13. [13] DiPerna R, Lions P.-L, On the Fokker–Planck–Boltzmann equation, Comm. Math. Phys.120 (1988) 1-23. Zbl0671.35068MR972541
  14. [14] DiPerna R, Lions P.-L, On the Cauchy problem for the Boltzmann equation: Global existence and weak stability, Ann. Math.130 (1989) 312-366. Zbl0698.45010MR1014927
  15. [15] DiPerna R, Lions P.-L, Meyer Y, Lp regularity of velocity averages, Ann. IHP8 (3–4) (1991) 271-287. Zbl0763.35014MR1127927
  16. [16] Goudon T, On Boltzmann equations and Fokker–Planck asymptotics: influence of grazing collisions, J. Stat. Phys.89 (3–4) (1997) 751-776. Zbl0918.35136MR1484062
  17. [17] Guernsey R.L, The Kinetic theory of fully ionized gases, Off. Nav. Res., Contract1224 (1960) 15. 
  18. [18] Y. Guo, The Boltzmann equation for soft potentials, Arch. Ration. Mech. Anal., in press. 
  19. [19] Guo Y, The Landau equation in a periodic box, Commun. Math. Phys.231 (2002) 391-434. Zbl1042.76053MR1946444
  20. [20] Lifchitz E, Pitaevskii L, Physical Kinetics – Course in Theoretical Physics, vol. 10, Pergamon, Oxford, 1981. 
  21. [21] Lenard A, Ann. Phys.3 (1960) 390. 
  22. [22] Lions P.-L, Global solutions of kinetic models and related problems, in: Cercignani C, Pulvirenti M (Eds.), Nonequilibrium Problems in Many-Particle Systems, Lecture Notes in Math., vol. 1551, Springer-Verlag, 1992, pp. 58-86. Zbl0799.35184MR1296258
  23. [23] Lions P.-L, Compactness in Boltzmann's equation via Fourier integral operators and applications, III, J. Math. Kyoto Univ.34 (3) (1994) 539-584. Zbl0884.35124MR1295942
  24. [24] Lions P.-L, On Boltzmann and Landau equations, Phil. Trans. R. Soc. London Ser. A346 (1994) 191-204. Zbl0809.35137MR1278244
  25. [25] Lions P.-L, Regularity and compactness for Boltzmann collision operators without angular cut-off, C. R. Acad. Sci. Paris, Sér. I326 (1) (1998) 37-41. Zbl0920.35114MR1649477
  26. [26] Rostoker N, Rosenbluth M.N, Phys. Fluids3 (1960) 390. MR113502
  27. [27] Schram P, Kinetic Theory of Gases and Plasmas, Kluwer Academic, Dordrecht, 1991. MR1130397
  28. [28] Shkarofsky I, Johnston T, Bachynski M, The Particle Kinetics of Plasmas, Addison-Wesley, Reading, MA, 1966. 
  29. [29] Villani C, On the Landau equation: weak stability, global existence, Adv. Differential Equations1 (5) (1996) 793-816. Zbl0856.35020MR1392006
  30. [30] Villani C, On a new class of weak solutions for the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal.143 (3) (1998) 273-307. Zbl0912.45011MR1650006
  31. [31] Villani C, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off, Rev. Mat. Iberoamericana15 (2) (1999) 335-352. Zbl0934.45010MR1715411
  32. [32] C. Villani, Contribution à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas, PhD thesis, Univ. Paris-Dauphine, 1998. 
  33. [33] Villani C, Conservative forms of Boltzmann's collision operator: Landau revisited, Math. Models Numer. Anal.33 (1) (1999) 209-227. Zbl0919.35140MR1685753
  34. [34] Wilhelm H, Momentum and energy exchange between beams of particles interacting by Yukawa-type potentials, Phys. Rev.187 (1) (1969) 382-392. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.