Finite element methods on non-conforming grids by penalizing the matching constraint
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 2, page 357-372
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- R.A. Adams, Sobolev Spaces. Academic Press, New-York, San Francisco, London (1975).
- F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math.84 (1999) 173-197.
- F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér.31 (1997) 289-302.
- M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér.12 (1978) 211-236.
- F. Brezzi and M. Fortin, Mixed and Hybride Finite Element Methods. Springer-Verlag, New York (1991).
- P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978).
- P. Clement, Approximation by finite element using local regularization. RAIRO Ser. Rouge8 (1975) 77-84.
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris (1968).
- Y. Maday, C. Bernardi and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and their applications, H. Brezis and J.L. Lions Eds., Vol. XI, Pitman (1994) 13-51.
- J. Nitsche, Über eine Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1970/1971) 9-15.
- D. Schotzau, C. Schwab and R. Stenberg, Mixed hp-fem on anisotropic meshes ii. Hanging nodes and tensor products of boundary layer meshes. Numer. Math.83 (1999) 667-697.
- R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math.63 (1995) 139-148.