Finite element methods on non-conforming grids by penalizing the matching constraint
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 2, page 357-372
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBoillat, Eric. "Finite element methods on non-conforming grids by penalizing the matching constraint." ESAIM: Mathematical Modelling and Numerical Analysis 37.2 (2010): 357-372. <http://eudml.org/doc/194168>.
@article{Boillat2010,
abstract = {
The present paper deals with a finite element approximation of partial differential equations when the
domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming
because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized.
We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.
},
author = {Boillat, Eric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Finite element methods; non-matching grids; penalty technique.; elliptic problems; error estimate; finite element methods; penalty technique},
language = {eng},
month = {3},
number = {2},
pages = {357-372},
publisher = {EDP Sciences},
title = {Finite element methods on non-conforming grids by penalizing the matching constraint},
url = {http://eudml.org/doc/194168},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Boillat, Eric
TI - Finite element methods on non-conforming grids by penalizing the matching constraint
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 37
IS - 2
SP - 357
EP - 372
AB -
The present paper deals with a finite element approximation of partial differential equations when the
domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming
because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized.
We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.
LA - eng
KW - Finite element methods; non-matching grids; penalty technique.; elliptic problems; error estimate; finite element methods; penalty technique
UR - http://eudml.org/doc/194168
ER -
References
top- R.A. Adams, Sobolev Spaces. Academic Press, New-York, San Francisco, London (1975).
- F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math.84 (1999) 173-197.
- F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér.31 (1997) 289-302.
- M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér.12 (1978) 211-236.
- F. Brezzi and M. Fortin, Mixed and Hybride Finite Element Methods. Springer-Verlag, New York (1991).
- P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978).
- P. Clement, Approximation by finite element using local regularization. RAIRO Ser. Rouge8 (1975) 77-84.
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris (1968).
- Y. Maday, C. Bernardi and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and their applications, H. Brezis and J.L. Lions Eds., Vol. XI, Pitman (1994) 13-51.
- J. Nitsche, Über eine Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1970/1971) 9-15.
- D. Schotzau, C. Schwab and R. Stenberg, Mixed hp-fem on anisotropic meshes ii. Hanging nodes and tensor products of boundary layer meshes. Numer. Math.83 (1999) 667-697.
- R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math.63 (1995) 139-148.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.