Approximation by finite element functions using local regularization

Ph. Clément

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1975)

  • Volume: 9, Issue: R2, page 77-84
  • ISSN: 0764-583X

How to cite

top

Clément, Ph.. "Approximation by finite element functions using local regularization." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 9.R2 (1975): 77-84. <http://eudml.org/doc/193271>.

@article{Clément1975,
author = {Clément, Ph.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {77-84},
publisher = {Dunod},
title = {Approximation by finite element functions using local regularization},
url = {http://eudml.org/doc/193271},
volume = {9},
year = {1975},
}

TY - JOUR
AU - Clément, Ph.
TI - Approximation by finite element functions using local regularization
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1975
PB - Dunod
VL - 9
IS - R2
SP - 77
EP - 84
LA - eng
UR - http://eudml.org/doc/193271
ER -

References

top
  1. [1] Ph. CLEMENT, Un problème d'approximation par éléments finis, Annexe à la thèse de Doctorat, Ecole Polytechnique Fédérale de Lausane, 1973. 
  2. [2] J. J GOEL, Construction of Basic Functions for Numerical Utilisation of Ritz-s Method, Numer. Math., (1968), 12, 435-447. Zbl0271.65061MR256580
  3. [3] M. ZLAMAL, On the Finite Element Method, Numer. Math., (1968), 12, 394-409. Zbl0176.16001MR243753
  4. [4] J. H. BRAMBLE and M. ZLAMAL, Triangular Elements in the Finite Element Method, Math. of Comp. vol. 24, number 12, (1970), 809-820. Zbl0226.65073MR282540
  5. [5] G. STRANG, Approximation in the finite element method, Numer Math., (1972), 19, 81-98. Zbl0221.65174MR305547
  6. [6] G DUPUIS et J. J. GOEL, Eléments finis raffinés en élasticité bidimensionnelle, ZAMP, vol. 20, (1969), 858-881. Zbl0201.26604
  7. [7] J. DESCLOUX, Méthodes des éléments finis, Dept. de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1973. 
  8. [8] J. DESCLOUX, Two Basic Properties of Finite Eléments, Dept. of Math., Ecole Polytechnique Fédérale de Lausanne, 1973. 
  9. [9] P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in R n with applications to finite elements methods, Arch. Rational Mech. Anal., 46 (1972), 177-199. Zbl0243.41004MR336957
  10. [10] G. FICHERA, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics 8, Springer, 1965. Zbl0138.36104MR209639
  11. [11] S. HILBERT, A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations, Math. of Comp., 27 (1973), 81-89.tisf Zbl0257.65087MR331715

Citations in EuDML Documents

top
  1. Alexandre Ern, Sébastien Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems
  2. Stefano Berrone, Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients
  3. Daniel Kessler, Ricardo H. Nochetto, Alfred Schmidt, A posteriori error control for the Allen–Cahn problem : circumventing Gronwall’s inequality
  4. Rüdiger Verfürth, Error estimates for some quasi-interpolation operators
  5. R. Verfürth, A posteriori error estimates for nonlinear problems. L r -estimates for finite element discretizations of elliptic equations
  6. Alexandre Ern, Sébastien Meunier, error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems
  7. Sergey Repin, Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation
  8. Stefano Berrone, Robust error estimates for finite element discretizations of the heat equation with discontinuous coefficients
  9. Daniel Kessler, Ricardo H. Nochetto, Alfred Schmidt, error control for the Allen–Cahn problem: circumventing Gronwall's inequality
  10. Sergey I. Repin, Tatiana S. Samrowski, Stéfan A. Sauter, Combined modeling-discretization error estimate for elliptic problems with complicated interfaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.