Numerical resolution of an “unbalanced” mass transport problem
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 5, page 851-868
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBenamou, Jean-David. "Numerical resolution of an “unbalanced” mass transport problem." ESAIM: Mathematical Modelling and Numerical Analysis 37.5 (2010): 851-868. <http://eudml.org/doc/194194>.
@article{Benamou2010,
abstract = {
We introduce a modification of the Monge–Kantorovitch
problem of exponent 2 which accommodates non balanced initial
and final densities. The augmented Lagrangian numerical method
introduced in [6] is adapted to this “unbalanced”
problem. We illustrate the usability of this method on an
idealized error estimation problem in meteorology.
},
author = {Benamou, Jean-David},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Monge–Kantorovitch problem; Wasserstein distance; augmented Lagrangian method.; penalization technique; Monge-Kantorovitch problem; augmented Lagrangian numerical method; error estimation; meteorology},
language = {eng},
month = {3},
number = {5},
pages = {851-868},
publisher = {EDP Sciences},
title = {Numerical resolution of an “unbalanced” mass transport problem},
url = {http://eudml.org/doc/194194},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Benamou, Jean-David
TI - Numerical resolution of an “unbalanced” mass transport problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 37
IS - 5
SP - 851
EP - 868
AB -
We introduce a modification of the Monge–Kantorovitch
problem of exponent 2 which accommodates non balanced initial
and final densities. The augmented Lagrangian numerical method
introduced in [6] is adapted to this “unbalanced”
problem. We illustrate the usability of this method on an
idealized error estimation problem in meteorology.
LA - eng
KW - Monge–Kantorovitch problem; Wasserstein distance; augmented Lagrangian method.; penalization technique; Monge-Kantorovitch problem; augmented Lagrangian numerical method; error estimation; meteorology
UR - http://eudml.org/doc/194194
ER -
References
top- M. Balinski, A competitive (dual) simplex method for the assignment problem. Math. Program.34 (1986) 125-141.
- F. Barthe, On a reverse form of the Brascamp-Lieb inequality. Invent. Math.134 (1998) 335-361.
- J.-D. Benamou, A domain decomposition method for the polar factorization of vector valued mappings. SIAM J. Numer. Anal.32 (1995) 1808-1838.
- J.D. Benamou and Y. Brenier, Numerical resolution on a massively parallel computer of a test problem in meteorology using a domain decomposition algorithm, in First European conference in computational fluid dynamics. North Holland (1992).
- J.D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère/transport problem. SIAM J. Appl. Math.58 (1998) 1450-1461.
- J.D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math.84 (2000) 375-393.
- J.D. Benamou and Y. Brenier, Mixed L2/Wasserstein Optimal Mapping Between Prescribed Densities Functions (submitted).
- J.D. Benamou, Y. Brenier and K. Guittet, Numerical resolution of a multiphasic optimal mass transport problem. Tech. Report INRIA RR-4022.
- G. Boucjitte, G. Buttazzo and P. Seppechere, Shape Optimization Solutions via Monge-Kantorovich. C. R. Acad. Sci. Paris Sér. I324 (1997) 1185-1191.
- Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math.44 (1991) 375-417.
- Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math.52 (1999) 411-452.
- Y. Brenier, Extended Monge-Kantorovich theory. CIME 2001 lecture.
- L.A. Caffarelli, Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math.45 (1992) 1141-1151.
- L.A. Caffarelli, Boundary regularity of maps with convex potentials. II. Ann. of Math.144 (1996) 3, 453-496.
- M.J.P. Cullen, Solution to a model of a front forced by deformation. Q. J. R. Met. Soc.109 (1983) 565-573.
- M.J.P. Cullen, private communication.
- M.J.P. Cullen and R.J. Purser, An extended Lagrangian theory of semigeostrophic frontogenesis. J. Atmopheric Sci.41 (1984) 1477-1497.
- R.J. Douglas, Decomposition of weather forecast error using rearrangements of functions. (Preprint.)
- L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer. Lecture notes.
- M. Fortin and R. Glowinski, Augmented Lagrangian methods. Applications to the numerical solution of boundary value problems. North-Holland Publishing Co. Studies in Mathematics and its Applications 15 (1983) 340.
- U. Frischet al., Back to the early Universe by optimal mass transportation. Nature417 (2002) 260-262.
- W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math.177 (1996) 113-161.
- W. Gangbo and R.J. McCann, Shape recognition via Wasserstein distance. Quart. Appl. Math.58 (2000) 705-737.
- K. Guittet, On the time-continuous mass transport problem and its approximation by augmented Lagrangian techniques. SIAM J. Numer. Anal.41 (2003) 382-399.
- K. Guittet, Ph.D. dissertation (2002).
- S. Haker, A. Tannenbaum and R. Kikinis, Mass preserving mapping and image registration. MICCAI (2001) 120-127.
- R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment problem. Computing38 (1987) 325-340.
- R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal.29 (1998) 1-17.
- T. Kaijser, Computing the Kantorovich distance for images. J. Math. Imaging Vision9 (1998) 173-198.
- L.V. Kantorovich, On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.)37 (1942) 199-201.
- D. Kinderlehrer and N. Walkington, Approximation of Parabolic Equations based upon a Wasserstein metric. ESAIM: M2AN33 (1999) 837-852.
- S.A. Kochengin and V.I. Oliker, Determination of reflector surfaces from near-field scattering data. Inverse Problems13 (1997) 363-373.
- R.J. McCann, Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal.11 (2001) 589-608.
- R. Menozzi, Utilisation de la distance de Wasserstein et application sismique. Rapport IUP Génie Mathématique et Informatique, Université Paris IX-Dauphine.
- G. Monge, Mémoire sur la théorie des déblais et des remblais. Mem. Acad. Sci. Paris (1781).
- F. Otto, The geometry of dissipative evolution equation: the porous medium equation. Comm. Partial Differential Equations26 (2001) 101-174.
- S.T. Rachev and L. Rüschendorf, Mass transportation problems, in Theory, Probability and its Applications, Vol. I. Springer-Verlag, New York (1998) 508.
- A. Shnirelman, Generalized fluid flows, their approximation and applications. Geom. Funct. Anal.4 (1994) 586-620.
- C. Villani, Topics in mass transport. Lecture notes (2000).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.