A metaheuristic for a numerical approximation to the mass transfer problem
Martha L. Avendaño-Garrido; José R. Gabriel-Argũelles; Ligia Quintana-Torres; Efrén Mezura-Montes
International Journal of Applied Mathematics and Computer Science (2016)
- Volume: 26, Issue: 4, page 757-766
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topMartha L. Avendaño-Garrido, et al. "A metaheuristic for a numerical approximation to the mass transfer problem." International Journal of Applied Mathematics and Computer Science 26.4 (2016): 757-766. <http://eudml.org/doc/287182>.
@article{MarthaL2016,
abstract = {This work presents an improvement of the approximation scheme for the Monge-Kantorovich (MK) mass transfer problem on compact spaces, which is studied by Gabriel et al. (2010), whose scheme discretizes the MK problem, reduced to solve a sequence of finite transport problems. The improvement presented in this work uses a metaheuristic algorithm inspired by scatter search in order to reduce the dimensionality of each transport problem. The new scheme solves a sequence of linear programming problems similar to the transport ones but with a lower dimension. The proposed metaheuristic is supported by a convergence theorem. Finally, examples with an exact solution are used to illustrate the performance of our proposal.},
author = {Martha L. Avendaño-Garrido, José R. Gabriel-Argũelles, Ligia Quintana-Torres, Efrén Mezura-Montes},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {Monge-Kantorovich mass transfer problem; finite dimensional linear programming; transport problem; metaheuristic algorithm; scatter search},
language = {eng},
number = {4},
pages = {757-766},
title = {A metaheuristic for a numerical approximation to the mass transfer problem},
url = {http://eudml.org/doc/287182},
volume = {26},
year = {2016},
}
TY - JOUR
AU - Martha L. Avendaño-Garrido
AU - José R. Gabriel-Argũelles
AU - Ligia Quintana-Torres
AU - Efrén Mezura-Montes
TI - A metaheuristic for a numerical approximation to the mass transfer problem
JO - International Journal of Applied Mathematics and Computer Science
PY - 2016
VL - 26
IS - 4
SP - 757
EP - 766
AB - This work presents an improvement of the approximation scheme for the Monge-Kantorovich (MK) mass transfer problem on compact spaces, which is studied by Gabriel et al. (2010), whose scheme discretizes the MK problem, reduced to solve a sequence of finite transport problems. The improvement presented in this work uses a metaheuristic algorithm inspired by scatter search in order to reduce the dimensionality of each transport problem. The new scheme solves a sequence of linear programming problems similar to the transport ones but with a lower dimension. The proposed metaheuristic is supported by a convergence theorem. Finally, examples with an exact solution are used to illustrate the performance of our proposal.
LA - eng
KW - Monge-Kantorovich mass transfer problem; finite dimensional linear programming; transport problem; metaheuristic algorithm; scatter search
UR - http://eudml.org/doc/287182
ER -
References
top- Anderson, E. and Nash, P. (1987). Linear Programming in Infinite-dimensional Spaces, Wiley, New York, NY. Zbl0632.90038
- Anderson, E. and Philpott, A. (1984). Duality and an algorithm for a class of continuous transportation problems, Mathematics of Operations Research 9(2): 222-231. Zbl0538.90057
- Bazaraa, M.S., Jarvis, J.J. and Sherali, H.D. (2010). Linear Programming and Network Flows, Wiley-Interscience, Hoboken, NJ. Zbl1200.90002
- Benamou, J. (2003). Numerical resolution of an unbalanced mass transport problem, ESAIM Mathematical Modelling and Numerical Analysis 37(5): 851-868. Zbl1037.65063
- Benamou, J. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numerische Mathematik 84(3): 375-393. Zbl0968.76069
- Bosc, D. (2010). Numerical approximation of optimal transport maps, SSRN Electronic Journal, DOI: 10.2139/ssrn.1730684.
- Caffarelli, L., Feldman, M. and McCann, R. (2002). Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs, Journal of the American Mathematical Society 15(1): 1-26. Zbl1053.49032
- Gabriel, J., González-Hernández, J. and López-Martínez, R. (2010). Numerical approximations to the mass transfer problem on compact spaces, IMA Journal of Numerical Analysis 30(4): 1121-1136. Zbl1210.65109
- Glover, F. (1998). A template for scatter search and path relinking, in J.-K. Hao et al. (Eds.), Artificial Evolution, Lecture Notes in Computer Science, Vol. 1363, Springer, Berlin/Heidelberg, pp. 1-51.
- González-Hernández, J., Gabriel, J. and Hernández-Lerma, O. (2006). On solutions to the mass transfer problem, SIAM Journal on Optimization 17(2): 485-499. Zbl1165.49313
- Guittet, K. (2003). On the time-continuous mass transport problem and its approximation by augmented Lagrangian techniques, SIAM Journal on Numerical Analysis 41(1): 382-399. Zbl1039.65050
- Haker, S., Zhu, L., Tannenbaum, A. and Angenent, S. (2004). Optimal mass transport for registration and warping, International Journal of Computer Vision 63(3): 225-240.
- Hanin, L., Rachev, S. and Yakovlev, A. (1993). On the optimal control of cancer radiotherapy for non-homogeneous cell population, Advances in Applied Probability 25(1): 1-23. Zbl0767.60011
- Hernández-Lerma, O. and Gabriel, J. (2002). Strong duality of the Monge-Kantorovich mass transfer problem in metric spaces, Mathematische Zeitschrift 239(3): 579-591. Zbl1003.90026
- Hernández-Lerma, O. and Lasserre, J. (1998). Approximation schemes for infinite linear programs, SIAM Journal on Optimization 8(4): 973-988. Zbl0912.90219
- Kantorovich, L. (2006a). On a problem of Monge, Journal of Mathematical Sciences 133(4): 225-226. Zbl1080.49508
- Kantorovich, L. (2006b). On the translocation of masses, Journal of Mathematical Sciences 133(4): 1381-1382. Zbl1080.49507
- Laguna, M., Gortázar, F., Gallego, M., Duarte, A. and Martí, R. (2014). A black-box scatter search for optimization problems with integer variables, Journal of Global Optimization 58(3): 497-516. Zbl1305.90304
- Levin, V. (2006). Optimality conditions and exact solutions to the two-dimensional Monge-Kantorovich problem, Journal of Mathematical Sciences 133(4): 1456-1463. Zbl1099.49028
- Martí, R., Laguna, M. and Glover, F. (2006). Principles of scatter search, European Journal of Operational Research 169(2): 359-372. Zbl1079.90178
- Mèrigot, Q. (2011). A multiscale approach to optimal transport, Computer Graphics Forum 30(5): 1583-1592.
- Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais, De l'Imprimerie Royale, Paris.
- Rachev, S. (1991). Probability Metrics and the Stability of Stochastic Models, Wiley, New York, NY. Zbl0744.60004
- Rachev, S. and Rüschendorf, L. (1998). Mass Transportation Problems, Vol. I, Springer, New York, NY. Zbl0990.60500
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.