# Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

- Volume: 37, Issue: 6, page 1013-1043
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topKunert, Gerd, and Nicaise, Serge. "Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes." ESAIM: Mathematical Modelling and Numerical Analysis 37.6 (2010): 1013-1043. <http://eudml.org/doc/194195>.

@article{Kunert2010,

abstract = {
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large.
Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived
which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient.
The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results.
Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained.
The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh.
The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.
},

author = {Kunert, Gerd, Nicaise, Serge},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Anisotropic mesh;
error estimator;
Zienkiewicz–Zhu estimator;
recovered gradient.; finite element methods; anisotropic meshes; error estimators; mesh refinement; Zienkiewicz-Zhu estimator; recovered gradient; elliptic second-order boundary value problems; numerical experiments},

language = {eng},

month = {3},

number = {6},

pages = {1013-1043},

publisher = {EDP Sciences},

title = {Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes},

url = {http://eudml.org/doc/194195},

volume = {37},

year = {2010},

}

TY - JOUR

AU - Kunert, Gerd

AU - Nicaise, Serge

TI - Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2010/3//

PB - EDP Sciences

VL - 37

IS - 6

SP - 1013

EP - 1043

AB -
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large.
Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived
which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient.
The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results.
Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained.
The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh.
The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.

LA - eng

KW - Anisotropic mesh;
error estimator;
Zienkiewicz–Zhu estimator;
recovered gradient.; finite element methods; anisotropic meshes; error estimators; mesh refinement; Zienkiewicz-Zhu estimator; recovered gradient; elliptic second-order boundary value problems; numerical experiments

UR - http://eudml.org/doc/194195

ER -

## References

top- M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley (2000). Zbl1008.65076
- Th. Apel, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, Stuttgart (1999).
- I. Babuška, T. Strouboulis and C.S. Upadhyay, A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech. Engrg.114 (1994) 307–378.
- I. Babuška, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj and K. Copps, Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng.37 (1994) 1073–1123. Zbl0811.65088
- S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: High order FEM. Math. Comp.71 (2002) 971–994. Zbl0997.65127
- J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2-projection in ${H}^{1}\left(\omega \right)$. Math. Comp.71 (2002) 147–156. Zbl0989.65122
- C. Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces. Math. Comp.71 (2002) 157–163. Zbl0989.65123
- C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comp.71 (2002) 945–969. Zbl0997.65126
- P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). Zbl0383.65058
- M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the finite element method on anisotropic meshes. Electron. Trans. Numer. Anal.8 (1999) 36–45. Zbl0934.65122
- G. Kunert, A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes. Logos Verlag, Berlin (1999). Also Ph.D. thesis, TU Chemnitz, http://archiv.tu-chemnitz.de/pub/1999/0012/index.html Zbl0919.65066
- G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math.86 (2000) 471–490, DOI 10.1007/s002110000170. Zbl0965.65125
- G. Kunert, A local problem error estimator for anisotropic tetrahedral f inite element meshes. SIAM J. Numer. Anal.39 (2001) 668–689. Zbl1004.65112
- G. Kunert, A posteriori L2 error estimation on anisotropic tetrahedral finite element meshes. IMA J. Numer. Anal.21 (2001) 503–523. Zbl0993.65118
- G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction–diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math.15 (2001) 237–259. Zbl1049.65121
- G. Kunert and S. Nicaise, Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, preprint SFB393/01–20, TU Chemnitz, July 2001. Also http://archiv.tu-chemnitz.de/pub/2001/0059/index.html Zbl1077.65114
- G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math.86 (2000) 283–303, DOI 10.1007/s002110000152. Zbl0964.65120
- L.A. Oganesyan and L.A. Rukhovets, Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan (1979), in Russian. Zbl0496.65053
- G. Raugel, Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, Sér. I Math286 (1978) A791–A794. Zbl0377.65058
- R. Rodriguez, Some remarks on the Zienkiewicz–Zhu estimator. Numer. Meth. PDE10 (1994) 625–635. Zbl0806.73069
- H.G. Roos and T. Linß, Gradient recovery for singularly perturbed boundary value problems II: Two-dimensional convection-diffusion. Math. Models Methods Appl. Sci.11 (2001) 1169–1179. Zbl1014.65122
- K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math.73 (1996) 373–398. Zbl0873.65098
- O. Steinbach, On the stability of the L2-projection in fractional Sobolev spaces. Numer. Math.88 (2001) 367–379. Zbl0989.65124
- R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996). Zbl0853.65108
- Zh. Zhang, Superconvergent finite element method on a Shishkin mesh for convection-diffusion problems. Report 98-006, Texas Tech University (1998).
- O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg.24 (1987) 337–357. Zbl0602.73063
- O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Engrg.101 (1992) 207–224. Zbl0779.73078

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.