A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP
Christophe Besse; Brigitte Bidégaray-Fesquet; Antoine Bourgeade; Pierre Degond; Olivier Saut
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 2, page 321-344
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBesse, Christophe, et al. "A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP." ESAIM: Mathematical Modelling and Numerical Analysis 38.2 (2010): 321-344. <http://eudml.org/doc/194216>.
@article{Besse2010,
abstract = {
This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material.
},
author = {Besse, Christophe, Bidégaray-Fesquet, Brigitte, Bourgeade, Antoine, Degond, Pierre, Saut, Olivier},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Nonlinear optics; optical susceptibility; harmonic generation; quantum description of light and matter; nonlinear optical crystals.},
language = {eng},
month = {3},
number = {2},
pages = {321-344},
publisher = {EDP Sciences},
title = {A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP},
url = {http://eudml.org/doc/194216},
volume = {38},
year = {2010},
}
TY - JOUR
AU - Besse, Christophe
AU - Bidégaray-Fesquet, Brigitte
AU - Bourgeade, Antoine
AU - Degond, Pierre
AU - Saut, Olivier
TI - A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 38
IS - 2
SP - 321
EP - 344
AB -
This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material.
LA - eng
KW - Nonlinear optics; optical susceptibility; harmonic generation; quantum description of light and matter; nonlinear optical crystals.
UR - http://eudml.org/doc/194216
ER -
References
top- P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics. Oxford University Press (1996).
- H.J. Bakker, P.C.M. Planken, L. Kuipers and A. Lagendijk, Phase modulation in second-order nonlinear-optical processes. Phys. Rev. A42 (1990) 4085–4101.
- H.J. Bakker, P.C.M. Planken and H.G. Muller, Numerical calculation of optical frequency-conversion processes: a new approach. J. Opt. Soc. Am. B6 (1989) 1665–1672.
- B. Bidégaray, A. Bourgeade and D. Reignier, Introducing physical relaxation terms in Bloch equations. J. Comput. Phys.170 (2001) 603–613.
- B. Bidégaray, Time discretizations for Maxwell-Bloch equations. Numer. Methods Partial Differential Equations19 (2003) 284–300.
- D.M. Bishop, Group theory and chemistry. Dover Press (1973).
- A. Bourgeade and E. Freysz, Computational modeling of second-harmonic generation by solution of full-wave vector Maxwell equations. J. Opt. Soc. Am. B17 (2000) 226–234.
- R.W. Boyd, Nonlinear Optics. Academic Press (1992).
- M.M. Choy and R.L. Byer, Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals. Phys. Rev. B14 (1976) 1693–1706.
- T. Ditmire, A.M. Rubenchik, D. Eimerl and M.D. Perry, Effects of cubic nonlinearity on frequency doubling of high-power laser pulses. J. Opt. Soc. Am. B13 (1996) 649–655.
- R. Eckardt, H. Masuda, Y.X. Fan and R.L. Byer, Absolute and relative nonlinear optical coefficients of KDP, KDP*, BaB2O4, LiIO3>, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation. IEEE J. of Quantum Electr.26 (1990) 922–933.
- D. Eimerl, Electro-optic, linear and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics72 (1987) 95–139.
- J. Jerphagnon and S.K. Kurtz, Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate. Phys. Rev. B1 (1970) 1739–1744.
- N.C. Kothari and X. Carlotti, Transient second-harmonic generation: influence of effective group-velocity dispersion. J. Opt. Soc. Am. B5 (1988) 756–764.
- S.K. Kurtz, J. Jerphagnon and M.M. Choy, Nonlinear dielectric susceptibilities. Landolt-Boernstein new series3 (1979) 671–743.
- B.F. Levine, Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures. Phys. Rev. B7 (1973) 2600–2626.
- R. Maleck Rassoul, A. Ivanov, E. Freysz, A. Ducasse and F. Hache, Second-harmonic generation under phase-velocity and group-velocity mismatch: influence of cascading self-phase and cross-phase modulation. Opt. Lett.22 (1997) 268–270.
- R.C. Miller, Optical harmonic generation in piezoelectric crystals. Appl. Phys. Lett.5 (1964) 17–19.
- O. Saut, Étude numérique des nonlinéarités d'un cristal par résolution des équations de Maxwell-Bloch, Ph.D. Thesis, INSA Toulouse (2003).
- O. Saut, Computational modeling of ultrashort powerful laser pulses in an anisotropic crystal. J. Comput. Phys. (2004) (to appear).
- L.I. Schiff, Quantum Mechanics. Mc Graw-Hill International Editions (1995).
- J.P. Serre, Représentations linéaires des groupes finis. Hermann (1998).
- I. Shoji, T. Kondo, A. Kitamoto, M. Shirane and R. Ito, Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B14 (1997) 2268–2294.
- J.P. Van Der Ziel and N. Bloembergen, Temperature dependence of optical harmonic generation in KH2PO4 ferroelectrics. Phys. Rev.135 (1964) 1662–1669.
- F. Zernicke, Refractive indices of ADP and KDP between 2000 Å and 1.5 µm. J. Opt. Soc. Am.54 (1964) 1215–1220.
- R.W. Ziolkowski, J.M. Arnold and D.M. Gogny, Ultrafast pulse interactions with two-level atoms. Phys. Rev. A52 (1995) 3082–3094.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.