A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP

Christophe Besse; Brigitte Bidégaray-Fesquet; Antoine Bourgeade; Pierre Degond; Olivier Saut

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 38, Issue: 2, page 321-344
  • ISSN: 0764-583X

Abstract

top
This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material.

How to cite

top

Besse, Christophe, et al. "A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP." ESAIM: Mathematical Modelling and Numerical Analysis 38.2 (2010): 321-344. <http://eudml.org/doc/194216>.

@article{Besse2010,
abstract = { This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material. },
author = {Besse, Christophe, Bidégaray-Fesquet, Brigitte, Bourgeade, Antoine, Degond, Pierre, Saut, Olivier},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Nonlinear optics; optical susceptibility; harmonic generation; quantum description of light and matter; nonlinear optical crystals.},
language = {eng},
month = {3},
number = {2},
pages = {321-344},
publisher = {EDP Sciences},
title = {A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP},
url = {http://eudml.org/doc/194216},
volume = {38},
year = {2010},
}

TY - JOUR
AU - Besse, Christophe
AU - Bidégaray-Fesquet, Brigitte
AU - Bourgeade, Antoine
AU - Degond, Pierre
AU - Saut, Olivier
TI - A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 38
IS - 2
SP - 321
EP - 344
AB - This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material.
LA - eng
KW - Nonlinear optics; optical susceptibility; harmonic generation; quantum description of light and matter; nonlinear optical crystals.
UR - http://eudml.org/doc/194216
ER -

References

top
  1. P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics. Oxford University Press (1996).  
  2. H.J. Bakker, P.C.M. Planken, L. Kuipers and A. Lagendijk, Phase modulation in second-order nonlinear-optical processes. Phys. Rev. A42 (1990) 4085–4101.  
  3. H.J. Bakker, P.C.M. Planken and H.G. Muller, Numerical calculation of optical frequency-conversion processes: a new approach. J. Opt. Soc. Am. B6 (1989) 1665–1672.  
  4. B. Bidégaray, A. Bourgeade and D. Reignier, Introducing physical relaxation terms in Bloch equations. J. Comput. Phys.170 (2001) 603–613.  
  5. B. Bidégaray, Time discretizations for Maxwell-Bloch equations. Numer. Methods Partial Differential Equations19 (2003) 284–300.  
  6. D.M. Bishop, Group theory and chemistry. Dover Press (1973).  
  7. A. Bourgeade and E. Freysz, Computational modeling of second-harmonic generation by solution of full-wave vector Maxwell equations. J. Opt. Soc. Am. B17 (2000) 226–234.  
  8. R.W. Boyd, Nonlinear Optics. Academic Press (1992).  
  9. M.M. Choy and R.L. Byer, Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals. Phys. Rev. B14 (1976) 1693–1706.  
  10. T. Ditmire, A.M. Rubenchik, D. Eimerl and M.D. Perry, Effects of cubic nonlinearity on frequency doubling of high-power laser pulses. J. Opt. Soc. Am. B13 (1996) 649–655.  
  11. R. Eckardt, H. Masuda, Y.X. Fan and R.L. Byer, Absolute and relative nonlinear optical coefficients of KDP, KDP*, BaB2O4, LiIO3>, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation. IEEE J. of Quantum Electr.26 (1990) 922–933.  
  12. D. Eimerl, Electro-optic, linear and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics72 (1987) 95–139.  
  13. J. Jerphagnon and S.K. Kurtz, Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate. Phys. Rev. B1 (1970) 1739–1744.  
  14. N.C. Kothari and X. Carlotti, Transient second-harmonic generation: influence of effective group-velocity dispersion. J. Opt. Soc. Am. B5 (1988) 756–764.  
  15. S.K. Kurtz, J. Jerphagnon and M.M. Choy, Nonlinear dielectric susceptibilities. Landolt-Boernstein new series3 (1979) 671–743.  
  16. B.F. Levine, Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures. Phys. Rev. B7 (1973) 2600–2626.  
  17. R. Maleck Rassoul, A. Ivanov, E. Freysz, A. Ducasse and F. Hache, Second-harmonic generation under phase-velocity and group-velocity mismatch: influence of cascading self-phase and cross-phase modulation. Opt. Lett.22 (1997) 268–270.  
  18. R.C. Miller, Optical harmonic generation in piezoelectric crystals. Appl. Phys. Lett.5 (1964) 17–19.  
  19. O. Saut, Étude numérique des nonlinéarités d'un cristal par résolution des équations de Maxwell-Bloch, Ph.D. Thesis, INSA Toulouse (2003).  
  20. O. Saut, Computational modeling of ultrashort powerful laser pulses in an anisotropic crystal. J. Comput. Phys. (2004) (to appear).  
  21. L.I. Schiff, Quantum Mechanics. Mc Graw-Hill International Editions (1995).  
  22. J.P. Serre, Représentations linéaires des groupes finis. Hermann (1998).  
  23. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane and R. Ito, Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B14 (1997) 2268–2294.  
  24. J.P. Van Der Ziel and N. Bloembergen, Temperature dependence of optical harmonic generation in KH2PO4 ferroelectrics. Phys. Rev.135 (1964) 1662–1669.  
  25. F. Zernicke, Refractive indices of ADP and KDP between 2000 Å and 1.5 µm. J. Opt. Soc. Am.54 (1964) 1215–1220.  
  26. R.W. Ziolkowski, J.M. Arnold and D.M. Gogny, Ultrafast pulse interactions with two-level atoms. Phys. Rev. A52 (1995) 3082–3094.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.