A fast algorithm for the two dimensional HJB equation of stochastic control
J. Frédéric Bonnans; Élisabeth Ottenwaelter; Housnaa Zidani
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 4, page 723-735
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Barles and E.R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN 36 (2002) 33–54.
- G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations (to appear).
- G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis4 (1991) 271–283.
- J.F. Bonnans and H. Zidani, Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal.41 (2003) 1008–1021.
- J.F. Bonnans, E. Ottenwaelter and H. Zidani, A fast algorithm for the two dimensional HJB equation of stochastic control. Technical report, INRIA (2004). Rapport de Recherche 5078.
- F. Camilli and M. Falcone, An approximation scheme for the optimal control of diffusion processes. RAIRO Modél. Math. Anal. Numér.29 (1995) 97–122.
- W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer, New York (1993).
- R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation For Computer Science. Addison-Wesley, Reading, MA (1994). Second edition.
- E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations. J. Differ. Equations183 (2002) 497–525.
- N.V. Krylov, On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients. Probab. Theory Related Fields117 (2000) 1–16.
- H.J. Kushner, Probability methods for approximations in stochastic control and for elliptic equations. Academic Press, New York (1977). Math. Sci. Engrg.129.
- H.J. Kushner and P.G. Dupuis, Numerical methods for stochastic control problems in continuous time. Springer, New York, Appl. Math.24 (2001). Second edition.
- P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part 2: Viscosity solutions and uniqueness. Comm. Partial Differential Equations8 (1983) 1229–1276.
- P.-L. Lions and B. Mercier, Approximation numérique des équations de Hamilton-Jacobi-Bellman. RAIRO Anal. Numér.14 (1980) 369–393.
- J.-L. Menaldi, Some estimates for finite difference approximations. SIAM J. Control Optim.27 (1989) 579–607.