An asymptotically optimal model for isotropic heterogeneous linearly elastic plates
Ferdinando Auricchio; Carlo Lovadina; Alexandre L. Madureira
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 5, page 877-897
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- S.M. Alessandrini, D.N. Arnold, R.S. Falk and A.L. Madureira, Derivation and Justification of Plate Models by Variational Methods. Centre de Recherches Mathematiques, CRM Proceedings and Lecture Notes (1999).
- D.N. Arnold and R.S. Falk, Asymptotic analysis of the boundary layer for the Reissner Mindlin plate model. SIAM J. Math. Anal.27 (1996) 486–514.
- D.N. Arnold, A.L. Madureira and S. Zhang, On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models. J. Elasticity67 (2002) 171–185.
- F. Auricchio and E. Sacco, Partial-mixed formulation and refined models for the analysis of composite laminates within FSDT. Composite Structures46 (1999) 103–113.
- D. Caillerie, Thin elastic and periodic plates. Math. Meth. Appl. Sci.6 (1984) 159–191.
- P.G. Ciarlet, Mathematical Elasticity, volume II: Theory of Plates, North-Holland Publishing Co., Amsterdam. Stud. Math. Appl.27 (1997).
- P.G. Ciarlet and Ph. Destuynder, A justification of the two dimensional linear plate model. J. Mécanique18 (1979) 315–344.
- M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate, I. Optimal error estimates. Asymptotic Anal.13 (1996) 167–197.
- P. Destuynder, Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Ph.D. thesis, Université Pierre et Marie Curie - Paris, France (1980).
- K.H. Lo, R.M. Christensen and E.M. Wu, A high-order theory of plate deformation. J. Appl. Mech.46 (1977) 663–676.
- O.V. Motygin and S.A. Nazarov, Justification of the Kirchhoff hypotheses and error estimation for two-dimensional models of anisotropic and inhomogeneous plates, including laminated plates. IMA J. Appl. Math.65 (2000) 1–28.
- J.C. Paumier and A. Raoult, Asymptotic consistency of the polynomial approximation in the linearized plate theory application to the Reissner-Mindlin model. ESAIM: Proc.2 (1997) 203-213.
- J. Sanchez Hubert and E. Sanchez Palencia, Introduction aux méthodes asymptotiques et à l'homogénéisation, Masson, Paris (1992).