Finite volume schemes for the p-Laplacian on Cartesian meshes
Boris Andreianov; Franck Boyer; Florence Hubert
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 6, page 931-959
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- P. Angot, C.-H. Bruneau and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math.81 (1999) 497–520.
- B. Andreianov, F. Boyer and F. Hubert, Finite volume schemes for the p-Laplacian. Further error estimates. Preprint No. 03-29, LATP Université de Provence (2003).
- B. Andreianov, M. Gutnic and P. Wittbold, Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: A “continuous” approach. SIAM J. Numer. Anal.42 (2004) 228–251.
- J.W. Barrett and W.B. Liu, A remark on the regularity of the solutions of the p-Laplacian and its application to the finite element approximation, J. Math. Anal. Appl. 178 (1993) 470–487.
- J.W. Barrett and W.B. Liu, Finite element approximation of the p-Laplacian. Math. Comp.61 (1993) 523–537.
- S. Chow, Finite element error estimates for non-linear elliptic equations of monotone type. Numer. Math.54 (1989) 373–393.
- Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN33 (1999) 493–516.
- J.I. Diaz and F. de Thelin, On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal.25 (1994) 1085–1111.
- K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. (2004) (submitted).
- R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, Handbook Numer. Anal., P.G. Ciarlet and J.L. Lions Eds., North-Holland VII (2000).
- R. Eymard, T. Gallouët and R. Herbin, Finite volume approximation of elliptic problems and convergence of an approximate gradient. Appl. Numer. Math.37 (2001) 31–53.
- R. Eymard, T. Gallouët and R. Herbin, A finite volume scheme for anisotropic diffusion problems. C.R. Acad. Sci. Paris 1339 (2004) 299–302.
- R. Glowinski and A. Marrocco, Sur l'approximation par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires. RAIRO Sér. Rouge Anal. Numér.9 no R-2 (1975).
- R. Glowinski and J. Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM: M2AN37 (2003) 175–186.
- M. Picasso, J. Rappaz, A. Reist, M. Funk and H. Blatter, Numerical simulation of the motion of a two dimensional glacier. Int. J. Numer. Methods Eng.60 (2004) 995–1009.
- J. Simon, Régularité de la solution d'un problème aux limites non linéaires. Ann. Fac. Sciences Toulouse 3 (1981) 247–274.