Mathematical models for laser-plasma interaction

Rémi Sentis

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 39, Issue: 2, page 275-318
  • ISSN: 0764-583X

Abstract

top
We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the coupling with the ion acoustic waves which has to be taken into account to model the so called Brillouin instability. Here, besides the macroscopic density and the velocity of the plasma, one has to handle the space-time envelope of the main laser wave, the space-time envelope of the stimulated Brillouin backscattered laser wave and the space envelope of the Brillouin ion acoustic waves. Numerical methods are also described to deal with the paraxial model and the three-wave coupling system related to the Brillouin instability.

How to cite

top

Sentis, Rémi. "Mathematical models for laser-plasma interaction." ESAIM: Mathematical Modelling and Numerical Analysis 39.2 (2010): 275-318. <http://eudml.org/doc/194263>.

@article{Sentis2010,
abstract = { We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the coupling with the ion acoustic waves which has to be taken into account to model the so called Brillouin instability. Here, besides the macroscopic density and the velocity of the plasma, one has to handle the space-time envelope of the main laser wave, the space-time envelope of the stimulated Brillouin backscattered laser wave and the space envelope of the Brillouin ion acoustic waves. Numerical methods are also described to deal with the paraxial model and the three-wave coupling system related to the Brillouin instability. },
author = {Sentis, Rémi},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Euler-Maxwell system; numerical plasma simulation; geometrical optics; paraxial approximation; Schrödinger equation; three-wave coupling system; Brillouin instability.; Maxwell equation; plasma hydrodynamics; laser propagation; Brillouin instability},
language = {eng},
month = {3},
number = {2},
pages = {275-318},
publisher = {EDP Sciences},
title = {Mathematical models for laser-plasma interaction},
url = {http://eudml.org/doc/194263},
volume = {39},
year = {2010},
}

TY - JOUR
AU - Sentis, Rémi
TI - Mathematical models for laser-plasma interaction
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 39
IS - 2
SP - 275
EP - 318
AB - We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the coupling with the ion acoustic waves which has to be taken into account to model the so called Brillouin instability. Here, besides the macroscopic density and the velocity of the plasma, one has to handle the space-time envelope of the main laser wave, the space-time envelope of the stimulated Brillouin backscattered laser wave and the space envelope of the Brillouin ion acoustic waves. Numerical methods are also described to deal with the paraxial model and the three-wave coupling system related to the Brillouin instability.
LA - eng
KW - Euler-Maxwell system; numerical plasma simulation; geometrical optics; paraxial approximation; Schrödinger equation; three-wave coupling system; Brillouin instability.; Maxwell equation; plasma hydrodynamics; laser propagation; Brillouin instability
UR - http://eudml.org/doc/194263
ER -

References

top
  1. M.R. Amin, C.E. Capjack, P. Fricz, W. Rozmus and V.T. Tikhonchuk, Two-dimensional studies of stimulated Brillouin scattering, filamentation. Phys. Fluids B5 (1993) 3748–3764.  
  2. A. Arnold and M. Ehrhardt, Discrete transparent boundary conditions for wide angle parabolic equations. J. Comput. Phys.145 (1998) 611–638.  
  3. P. Ballereau, M. Casanova, F. Duboc, D. Dureau, H. Jourdren, P. Loiseau, J. Metral, O. Morice and R. Sentis, Coupling hydrodynamics with a paraxial solver for laser propagation. CEA internal report (2005).  
  4. J.D. Benamou, An introduction to Eulerian geometrical optics. J. Sci. Comp.19 (2003) 63–95.  
  5. J.D. Benamou, F. Castella, T. Katsaounis and B. Perthame, High Frequency limit of the Helmholtz equations. Rev. Mat. Iberoamericana18 (2002) 187–209.  
  6. J.D. Benamou, O. Lafitte, R. Sentis and I. Solliec, A geometrical optics based numerical method for high frequency electromagnetic fields computations near fold caustics (part I). J. Comput. Appl. Math.156 (2003) 93–125.  
  7. J.D. Benamou, O. Lafitte, R. Sentis and I. Solliec, A geometrical optics based numerical method for high frequency electromagnetic fields computations near fold caustics (part II, the Energy). J. Comput. Appl. Math.167 (2004) 91–134.  
  8. J.P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys.114 (1994) 185–200.  
  9. R.L. Berger, C.H. Still, E.A. Williams and A.B. Langdon, On the dominant subdominant behavior of stimulated Raman and Brillouin scattering. Phys. Plasmas5 (1998) 4337.  
  10. R.L. Bergeret al., Theory and three-dimensional simulation of light filamentation. Phys. Fluids B5 (1993) 2243.  
  11. C. Besse, N.J. Mauser and H.P. Stimming, Numerical study of the Davey-Stewartson System. ESAIM: M2AN38 (2004) 1035–1054.  
  12. H. Brezis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité dans les plasmas. Note C. R. Acad. Sci. Paris Sér. I321 (1995) 953–959.  
  13. F. Castella, B. Perthame and O. Runborg, High frequency limit of the Helmholtz equations, II. Source on a manifold. Comm. Partial Differential Equations27 (2002) 607–651.  
  14. F.F. Chen, Introduction to Plasmas Physics. Plenum, New York (1974).  
  15. M. Colin and T. Colin, On a Quasilinear Zakharov system describing Laser-Plasma Interaction. Differential Integral Equations17 (2004) 297–330.  
  16. M. Colin and T. Colin, Cauchy problem and numerical simulation for a quasi-linear Zakharov system. Accepted for publication in Nonlinear Analysis.  
  17. F. Collino, Perfectly matched absorbing layers for the paraxial equation. J. Comput. Phys.131 (1997) 164–180.  
  18. A. Decoster, Fluid equations and transport coefficient of plasmas, in Modelling of collisions. P.-A. Raviart Ed., Masson, Paris (1997).  
  19. S. Desroziers, Modelisation de la propagation laser par résolution de l'équation d'Helmholtz, CEA internal report (2005).  
  20. M. Doumic, F. Golse and R. Sentis, Propagation laser paraxiale en coordonnées obliques: équation d'advection-Schrödinger. Note C. R. Acad. Sci. Paris Sér. I336 (2003) 23–28.  
  21. M. Doumic, F. Duboc, F. Golse and R. Sentis, Numerical simulation for paraxial model of light propagation in a tilted frame: the advection-Schrödinger equation. CEA internal report (2005), preprint.  
  22. M.R. Dorr, F.X. Garaizar and J.A. Hittinger, Simuation of laser-plasma filamentation. J. Comput. Phys.17 (2002) 233–263.  
  23. V.V. Eliseev, W. Rozmus, V.T. Tikhonchuk and C.E. Capjack, Phys. Plasmas 2 (1996) 2215 and Phys. Plasmas3 (1996) 3754.  
  24. M.D. Feit and J.A. Fleck, Beam nonparaxiality, filament formation. J. Opt. Soc. Amer. B5 (1988) 633–640.  
  25. F.G. Friedlander and J.B. Keller, Asymptotic expansion of solutions of (Δ + k²)u = 0 Comm. Pure Appl. Math.5 (1955) 387.  
  26. S. Hüller, Ph. Mounaix, V.T. Tikhonchuk and D. Pesme, Interaction of two neighboring laser beams. Phys. Plasmas4 (1997) 2670–2680.  
  27. J.D. Jackson, Classical Electrodynamics. Wiley, New York (1962).  
  28. H. Jourdren, HERA hydrodynamics AMR Plateform for multiphysics simulation, in Proc. of Chicago workshop on AMR methods (Sept. 2003). Springer Verlag, Berlin (2004).  
  29. J.B. Keller and R.M. Lewis, Asymptotic Methods for P.D.E: The reduced Wave Equation. Research report Courant Inst. (1964); reprinted in Surveys Appl. Math.1, J.B. Keller, W. McLaughlin, G.C. Papanicolaou, Eds. Plenum, New York (1995).  
  30. J.B. Keller and J.S. Papadakis, Eds., Wave Propagation and underwater Accoustics. Springer, Berlin. Lecture Notes in Phys.70 (1977).  
  31. Y.A. Krastsov and Y.I. Orlov, Geometric optics for Inhomogeneous Media. Springer, Berlin (1990).  
  32. W.L. Kruer, The Physics of Laser-Plasma Interaction. Addison-Wesley, New York (1988).  
  33. D. Lee, A.D. Pierce, E.S. Shang, Parabolic equation development in the twentieth century. J. Comput. Acoust.8 (2000) 527–637.  
  34. P. Loiseau, O. Morice et al., Laser-beam smoothing induced by stimulated Brillouin scattering. CEA internal report (2005).  
  35. P. Mounaix, D. Pesme and M. Casanova, Nonlinear reflectivity of an inhomogeneous plasma. Phys. Rev. E55 (1997) 4653–4664.  
  36. J.S. Papadakis, M.I. Taroudakis, P.J. Papadakis and B. Mayfield, A new method for a realistic treatement of the sea bottom in parabolic approximation. J. Acoust. Soc. Amer.92 (1992) 2030–2038.  
  37. G.C. Papanicolaou, C. Sulem, P.L. Sulem and X.P. Wang, Singular solutions of the Zaharov equations for Langmuir turbulence. Phys. Fluids B3 (1991) 969–980.  
  38. D. Pesme, Interaction collisionnelle et collective (Chap. 2) in La fusion par Confinement Inertiel I. Interaction laser-matière. R. Dautray-Watteau Ed., Eyrolles, Paris (1995).  
  39. D. Pesme et al., Fluid-type Effects in the nonlinear Stimulated Brillouin Scatter, in Laser-Plasma Interaction Workshop at Wente, L. Divol Ed., Lawrence Livermore Nat. Lab. report UCRL-JC-148983 (2002).  
  40. G. Riazuelo and G. Bonnaud, Coherence properties of a smoothed laser beam in a hot plasma. Phys. Plasmas7 (2000) 3841.  
  41. H.A. Rose, Laser beam deflection. Phys. Plasmas3 (1996) 1709–1727.  
  42. Shaoet al., Spectral methods simulations of light scattering. IEEE J. Quantum Electronics37 (2001) 617.  
  43. G. Schurtz, Les codes numériques en FCI (Chap. 13), in La fusion par Confinement Inertiel, III. Techniques exp. et numériques, R. Dautray-Watteau Ed., Eyrolles, Paris (1995).  
  44. W.W. Symes and J. Qian, A slowness matching eulerian method. J. Sci. Comput.19 (2003) 501–526.  
  45. F.D. Tappert, The parabolic equation approximation method, in Wave Propagation and underwater Accoustics, J.B. Keller and J.S. Papadakis Eds., Springer, Berlin. Lecture Notes in Phys.70 (1977).  
  46. V.E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP35 (1972) 908.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.