The mathematical theory of low Mach number flows
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 39, Issue: 3, page 441-458
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topSchochet, Steven. "The mathematical theory of low Mach number flows." ESAIM: Mathematical Modelling and Numerical Analysis 39.3 (2010): 441-458. <http://eudml.org/doc/194269>.
@article{Schochet2010,
abstract = {
The mathematical theory of the passage from
compressible to incompressible fluid flow is reviewed.
},
author = {Schochet, Steven},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Incompressible limit; Mach number.; compressible flows; asymptotic expansions; multiple scales},
language = {eng},
month = {3},
number = {3},
pages = {441-458},
publisher = {EDP Sciences},
title = {The mathematical theory of low Mach number flows},
url = {http://eudml.org/doc/194269},
volume = {39},
year = {2010},
}
TY - JOUR
AU - Schochet, Steven
TI - The mathematical theory of low Mach number flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 39
IS - 3
SP - 441
EP - 458
AB -
The mathematical theory of the passage from
compressible to incompressible fluid flow is reviewed.
LA - eng
KW - Incompressible limit; Mach number.; compressible flows; asymptotic expansions; multiple scales
UR - http://eudml.org/doc/194269
ER -
References
top- T. Alazard, Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Differential Equations, to appear.
- G. Alì, Low Mach number flows in time-dependent domains. SIAM J. Appl. Math.63 (2003) 2020–2041.
- K. Asano, On the incompressible limit of the compressible euler equation. Japan J. Appl. Math.4 (1987) 455–488.
- B.J. Bayly, C.D. Levermore and T. Passot, Density variations in weakly compressible flows. Phys. Fluids A4 (1992) 945–954.
- D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math.109 (2002) 125–149.
- G. Browning and H.-O. Kreiss, Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math.42 (1982) 704–718.
- G. Browning, A. Kasahara and H.-O. Kreiss, Initialization of the primitive equations by the bounded derivative method. J. Atmospheric Sci.37 (1980) 1424–1436.
- C. Cheverry, Justification de l'optique géométrique non linéaire pour un système de lois de conservation. Duke Math. J.87 (1997) 213–263.
- A. Chorin, A numerical method for solving incompressible viscous flow problems. J. Comput. Phys.2 (1967) 12–26.
- R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math.124 (2002) 1153–1219.
- B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.455 (1999) 2271–2279.
- B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic navier-stokes equations with dirichlet boundary conditions. J. Math. Pures Appl.78 (1999) 461–471.
- A. Dutrifoy and T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. C. R. Math. Acad. Sci. Paris336 (2003) 471–474.
- D. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math.105 (1977) 141–200.
- D. Ebin, Motion of slightly compressible fluids in a bounded domain I. Comm. Pure Appl. Math.35 (1982) 451–485.
- I. Gallagher, Asymptotic of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations150 (1998) 363–384.
- B. Gustafsson and H. Stoor, Navier-Stokes equations for almost incompressible flow. SIAM J. Numer. Anal.28 (1991) 1523–1547.
- T. Hagstrom and J. Lorenz, All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal.29 (1998) 652–672.
- T. Hagstrom and J. Lorenz, On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J.51 (2002) 1339–1387.
- D. Hoff, The zero-Mach limit of compressible flows. Comm. Math. Phys.192 (1998) 543–554.
- T. Iguchi, The incompressible limit and the initial layer of the compressible Euler equation in . Math. Methods Appl. Sci.20 (1997) 945–958.
- H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math.381 (1987) 1–36.
- H. Isozaki, Wave operators and the incompressible limit of the compressible Euler equation. Comm. Math. Phys.110 (1987) 519–524.
- H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow. Osaka J. Math.26 (1989) 399–410.
- J.-L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics. Ann. Sci. École Norm. Sup. (4)28 (1995) 51–113.
- J.-L. Joly, G. Métivier and J. Rauch, Dense oscillations for the compressible 2-d Euler equations, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIII (Paris, 1994/1996), Longman, Harlow. Pitman Res. Notes Math. Ser.391 (1998) 134–166.
- T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal.58 (1975) 181–205.
- S. Klainerman and A. Majda, Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math.34 (1981) 481–524.
- S. Klainerman and A. Majda, Compressible and incompressible fluids. Comm. Pure Appl. Math.35 (1982) 629–653.
- R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys.121 (1995) 213–237.
- R. Klein, N. Botta, T. Schneider, C.-D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math.39 (2001) 261–343.
- H.-O. Kreiss, Problems with different time scales for partial differential equations. Comm. Pure Appl. Math.33 (1980) 399–439.
- C.K. Lin, On the incompressible limit of the compressible navier-stokes equations. Comm. Partial Differential Equations20 (1995) 677–707.
- P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York 3 (1996).
- P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl.77 (1998) 585–627.
- P.-L. Lions and N. Masmoudi, Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sér. I Math.329 (1999) 387–392.
- A. Meister, Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math.60 (2000) 256–271.
- G. Métivier and S. Schochet, The incompressible limit of the non-isentropic euler equations. Arch. Rational Mech. Anal.158 (2001) 61–90.
- G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations187 (2003) 106–183.
- B. Müller, Low-Mach-number asymptotics of the Navier-Stokes equations. J. Engrg. Math.34 (1998) 97–109.
- M. Schiffer, Analytical theory of subsonic and supersonic flows, in Handbuch der Physik. Springer-Verlag, Berlin 9 (1960) 1–161.
- S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm. Math. Phys.104 (1986) 49–75.
- S. Schochet, Asymptotics for symmetric hyperbolic systems with a large parameter. J. Differential Equations75 (1988) 1–27.
- S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differential Equations114 (1994) 476–512.
- P. Secchi, On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech.2 (2000) 107–125.
- T. Sideris, The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math J.40 (1991) 535–550.
- L. Sirovich, Initial and boundary value problems in dissipative gas dynamics. Phys. Fluids10 (1967) 24–34.
- R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam (1977).
- S. Ukai, The incompressible limit and initial layer of the compressible Euler equation. J. Math. Kyoto U.26 (1986) 323–331.
- P.S. van der Gulik, The linear pressure dependence of the viscosity at high densities. Physica A256 (1998) 39–56.
- M. Van Dyke, Perturbation methods in fluid mechanics. Appl. Math. Mech. 8. Academic Press, New York (1964).
- G.P. Zank and W.H. Matthaeus, The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves. Phys. Fluids A3 (1991) 69–82.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.