Domain sensitivity in singular limits of compressible viscous fluids

Eduard Feireisl[1]

  • [1] Institute of Mathematics of the Academy of Sciences of the Czech Republic Žitná 25 115 67 Praha 1 Czech Republic

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-16
  • ISSN: 2266-0607

Abstract

top
In this note, we discuss several recently developed methods for studying stability of a singular limit process with respect to the shape of the underlying physical space. As a model example, we consider a compressible viscous barotropic fluid occupying a spatial domain Ω R 3 . In what follows, we describe two rather different problems: (i) the choice of effective boundary conditions; (ii) the fluid flow in the low Mach number regime. In the remaining part of the paper, we analyze these two issues simultaneously comparing the impact of different scales on the form of the resulting effective equations as well as the boundary conditions. Such a “synthesis” of several mathematical techniques may be useful in analyzing much broader class of multiscale problems.

How to cite

top

Feireisl, Eduard. "Domain sensitivity in singular limits of compressible viscous fluids." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-16. <http://eudml.org/doc/251160>.

@article{Feireisl2011-2012,
abstract = {In this note, we discuss several recently developed methods for studying stability of a singular limit process with respect to the shape of the underlying physical space. As a model example, we consider a compressible viscous barotropic fluid occupying a spatial domain $\Omega \subset R^3$. In what follows, we describe two rather different problems: (i) the choice of effective boundary conditions; (ii) the fluid flow in the low Mach number regime. In the remaining part of the paper, we analyze these two issues simultaneously comparing the impact of different scales on the form of the resulting effective equations as well as the boundary conditions. Such a “synthesis” of several mathematical techniques may be useful in analyzing much broader class of multiscale problems.},
affiliation = {Institute of Mathematics of the Academy of Sciences of the Czech Republic Žitná 25 115 67 Praha 1 Czech Republic},
author = {Feireisl, Eduard},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {compressible viscous barotropic fluid},
language = {eng},
pages = {1-16},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Domain sensitivity in singular limits of compressible viscous fluids},
url = {http://eudml.org/doc/251160},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Feireisl, Eduard
TI - Domain sensitivity in singular limits of compressible viscous fluids
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 16
AB - In this note, we discuss several recently developed methods for studying stability of a singular limit process with respect to the shape of the underlying physical space. As a model example, we consider a compressible viscous barotropic fluid occupying a spatial domain $\Omega \subset R^3$. In what follows, we describe two rather different problems: (i) the choice of effective boundary conditions; (ii) the fluid flow in the low Mach number regime. In the remaining part of the paper, we analyze these two issues simultaneously comparing the impact of different scales on the form of the resulting effective equations as well as the boundary conditions. Such a “synthesis” of several mathematical techniques may be useful in analyzing much broader class of multiscale problems.
LA - eng
KW - compressible viscous barotropic fluid
UR - http://eudml.org/doc/251160
ER -

References

top
  1. A. A. Amirat, D. Bresch, J. Lemoine, and J. Simon. Effect of rugosity on a flow governed by stationary Navier-Stokes equations. Quart. Appl. Math., 59:768–785, 2001. Zbl1019.76014MR1866556
  2. J. M. Arrieta and D. Krejčiřík. Geometric versus spectral convergence for the Neumann Laplacian under exterior perturbations of the domain. In Integral methods in science and engineering. Vol. 1, pages 9–19. Birkhäuser Boston Inc., Boston, MA, 2010. Zbl1196.35148MR2663114
  3. D. Bucur, E. Feireisl, and Nečasová. Boundary behavior of viscous fluids: Influence of wall roughness and friction-driven boundary conditions. Arch. Rational Mech. Anal., 197:117–138, 2010. Zbl1273.76073MR2646816
  4. D. Bucur, E. Feireisl, Š. Nečasová, and J. Wolf. On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries. J. Differential Equations, 244:2890–2908, 2008. Zbl1143.35080MR2418180
  5. M. Bulíček, J. Málek, and K.R. Rajagopal. Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear- rate dependent viscosity. Indiana Univ. Math. J., 56:51–86, 2007. Zbl1129.35055MR2305930
  6. J. Casado-Díaz, E. Fernández-Cara, and J. Simon. Why viscous fluids adhere to rugose walls: A mathematical explanation. J. Differential Equations, 189:526–537, 2003. Zbl1061.76014MR1964478
  7. Luna-Laynez M. Suárez-Grau F.J. Casado-Díaz, J. Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall. Math. Models Meth. Appl. Sci., 20:121–156, 2010. Zbl1194.35302MR2606246
  8. F. Coron. Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation. J. Statistical Phys., 54:829–857, 1989. Zbl0666.76103MR988561
  9. H.L. Cycon, R.G. Froese, W. Kirsch, and B. Simon. Schrödinger operators: with applications to quantum mechanics and global geometry. Texts and monographs in physics, Springer-Verlag, Berlin,Heidelberg, 1987. Zbl0619.47005MR883643
  10. R. Danchin. Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math., 124:1153–1219, 2002. Zbl1048.35075MR1939784
  11. P. D’Ancona and R. Racke. Evolution equations in non-flat waveguides. 2010. arXiv:1010.0817. 
  12. D. M. Eidus. Limiting amplitude principle (in Russian). Usp. Mat. Nauk, 24(3):91–156, 1969. MR601072
  13. R. Farwig, H. Kozono, and H. Sohr. An L q -approach to Stokes and Navier-Stokes equations in general domains. Acta Math., 195:21–53, 2005. Zbl1111.35033MR2233684
  14. E. Feireisl. Local decay of acoustic waves in the low mach number limits on general unbounded domains under slip boundary conditions. Commun. Partial Differential Equations, 2010. Submitted. Zbl1229.35174MR2832163
  15. E. Feireisl, T. Karper, O. Kreml, and J. Stebel. Stability with respect to domain of the low Mach number limit of compressible viscous fluids. 2011. Preprint. Zbl1286.35194
  16. E. Feireisl, A. Novotný, and H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech., 3:358–392, 2001. Zbl0997.35043MR1867887
  17. I. Gallagher. Résultats récents sur la limite incompressible. Astérisque, (299):Exp. No. 926, vii, 29–57, 2005. Séminaire Bourbaki. Vol. 2003/2004. Zbl1329.76292MR2167201
  18. A. Henrot and M. Pierre. Variation et optimisation de formes, volume 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2005. Une analyse géométrique. [A geometric analysis]. Zbl1098.49001MR2512810
  19. W. Jaeger and A. Mikelić. On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differential Equations, 170:96–122, 2001. Zbl1009.76017MR1813101
  20. T. Kato. Remarks on the zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In Seminar on PDE’s, S.S. Chern (ed.), Springer, New York, 1984. Zbl0559.35067MR765230
  21. Y. Last. Quantum dynamics and decomposition of singular continuous spectra. J. Funct. Anal., 142:406–445, 1996. Zbl0905.47059MR1423040
  22. R. Leis. Initial-boundary value problems in mathematical physics. B.G. Teubner, Stuttgart, 1986. Zbl0599.35001MR841971
  23. J. Lighthill. On sound generated aerodynamically I. General theory. Proc. of the Royal Society of London, A 211:564–587, 1952. Zbl0049.25905MR47459
  24. J. Lighthill. On sound generated aerodynamically II. General theory. Proc. of the Royal Society of London, A 222:1–32, 1954. Zbl0055.19109MR61515
  25. C.M. Linton, P.-L., and P. McIver. Embedded trapped modes in water waves and acoustics. Wave Motion, 45:16–29, 2007. Zbl1231.76046MR2441664
  26. P.-L. Lions. Mathematical topics in fluid dynamics, Vol.2, Compressible models. Oxford Science Publication, Oxford, 1998. MR1637634
  27. P.-L. Lions and N. Masmoudi. Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl., 77:585–627, 1998. Zbl0909.35101MR1628173
  28. N. Masmoudi. Examples of singular limits in hydrodynamics. In Handbook of Differential Equations, III, C. Dafermos, E. Feireisl Eds., Elsevier, Amsterdam, 2006. Zbl1205.35230MR2549370
  29. B. Mohammadi, O. Pironneau, and F. Valentin. Rough boundaries and wall laws. Int. J. Numer. Meth. Fluids, 27:169–177, 1998. Zbl0904.76031MR1602088
  30. J.-C. Nédélec. Acoustic and electromagnetic equations. Springer-Verlag, Heidelberg, 2001. Zbl0981.35002MR1822275
  31. N. V. Priezjev and S.M. Troian. Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech., 554:25–46, 2006. Zbl1091.76016
  32. S. Richardson. On the no-slip boundary condition. J. Fluid Mech., 59:707–719, 1973. Zbl0265.76037
  33. S. Schochet. The mathematical theory of low Mach number flows. M2ANMath. Model Numer. anal., 39:441–458, 2005. Zbl1094.35094MR2157144
  34. B. R. Vaĭnberg. Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki. Moskov. Gos. Univ., Moscow, 1982. MR700559

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.