An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
Didier Bresch; Marguerite Gisclon; Chi-Kun Lin
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 39, Issue: 3, page 477-486
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBresch, Didier, Gisclon, Marguerite, and Lin, Chi-Kun. "An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit." ESAIM: Mathematical Modelling and Numerical Analysis 39.3 (2010): 477-486. <http://eudml.org/doc/194271>.
@article{Bresch2010,
abstract = {
The purpose of this work is to study an example of low Mach (Froude) number
limit of
compressible flows when the initial density (height) is almost equal to a
function depending on x.
This allows us to connect the viscous shallow water equation
and the viscous lake equations.
More precisely, we study this asymptotic with well prepared
data in a periodic domain looking at the influence of the variability of the
depth. The result concerns weak solutions.
In a second part, we discuss the general low Mach number limit for standard
compressible flows given in P.–L. Lions' book that means with constant
viscosity coefficients.
},
author = {Bresch, Didier, Gisclon, Marguerite, Lin, Chi-Kun},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Compressible flows; Navier-Stokes equations; low Mach (Froude) Number limit
shallow-water equations; lake equations; nonconstant density.; viscous shallow water equation; viscous lake equations; well prepared data; weak solutions},
language = {eng},
month = {3},
number = {3},
pages = {477-486},
publisher = {EDP Sciences},
title = {An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit},
url = {http://eudml.org/doc/194271},
volume = {39},
year = {2010},
}
TY - JOUR
AU - Bresch, Didier
AU - Gisclon, Marguerite
AU - Lin, Chi-Kun
TI - An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 39
IS - 3
SP - 477
EP - 486
AB -
The purpose of this work is to study an example of low Mach (Froude) number
limit of
compressible flows when the initial density (height) is almost equal to a
function depending on x.
This allows us to connect the viscous shallow water equation
and the viscous lake equations.
More precisely, we study this asymptotic with well prepared
data in a periodic domain looking at the influence of the variability of the
depth. The result concerns weak solutions.
In a second part, we discuss the general low Mach number limit for standard
compressible flows given in P.–L. Lions' book that means with constant
viscosity coefficients.
LA - eng
KW - Compressible flows; Navier-Stokes equations; low Mach (Froude) Number limit
shallow-water equations; lake equations; nonconstant density.; viscous shallow water equation; viscous lake equations; well prepared data; weak solutions
UR - http://eudml.org/doc/194271
ER -
References
top- T. Alazard, Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Submitted (2004).
- D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys.238 (2003) 211–223.
- D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder. Discrete Contin. Dynam. Systems Ser. A11 (2004) 47–82.
- D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations28 (2003) 1009–1037.
- D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math.109 (2002) 125–148.
- R. Danchin, Fluides légèrement compressibles et limite incompressible. Séminaire École Polytechnique (France), Exposé No. III (2000).
- B. Desjardins, E. Grenier, P.–L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl.78 (1999) 461–471.
- I. Gallagher, Résultats récents sur la limite incompressible. Séminaire Bourbaki (France), No. 926 (2003).
- J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar Shallow water; Numerical results. Discrete Contin. Dynam. Systems Ser. B1 (2001) 89–102.
- E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl.76 (1997) 477–498.
- C.D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity14 (2001) 1493–1515.
- C.D. Levermore, M. Oliver and E.S. Titi, Global well-posedness for a models of shallow water in a basin with a varying bottom. Indiana Univ. Math. J.45 (1996) 479–510.
- P.-L. Lions, Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford (1998).
- P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluids. J. Math. Pures Appl.77 (1998) 585–627.
- G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal.158 (2001) 61–90.
- G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, in Séminaire Équations aux Dérivées Partielles, École Polytechnique (2001).
- M. Oliver, Justification of the shallow water limit for a rigid lid with bottom topography. Theor. Comp. Fluid Dyn.9 (1997) 311–324.
- J. Pedlosky, Geophysical fluid dynamics. Berlin Heidelberg-New York, Springer-Verlag (1987).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.