Recent results on the incompressible limit
Séminaire Bourbaki (2003-2004)
- Volume: 46, page 29-58
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. Alazard – “Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions”, soumis. Zbl1101.35050
- [2] V. Arnold – “Sur la géométrie différentiable des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble) 16 (1966), p. 319–361. Zbl0148.45301MR202082
- [3] H. Bahouri & J.-Y. Chemin – “Équations d’ondes quasilinéaires et estimation de Strichartz”, Amer. J. Math.121 (1999), p. 1337–1377. Zbl0952.35073MR1719798
- [4] H. Beirao da Veiga – “Singular limits in compressible fluid dynamics”, Arch. Rational Mech. Anal. 128 (1994), no. 4, p. 313–327. Zbl0829.76073MR1308856
- [5] —, “On the sharp singular limit for slightly compressible fluids”, Math. Methods Appl. Sci. 18 (1995), no. 4, p. 295–306. Zbl0819.35111MR1320000
- [6] D. Bresch, B. Desjardins, E. Grenier & C.K. Lin – “Low Mach number limit of viscous polytropic flows : formal asymptotics in the periodic case”, Stud. Appl. Math. 109 (2002), no. 2, p. 125–149. Zbl1114.76347MR1917042
- [7] G. Browning & H.-O. Kreiss – “Problems with different time scales for nonlinear partial differential equations”, SIAM J. Appl. Math. 42 (1982), no. 4, p. 704–718. Zbl0506.35006MR665380
- [8] N. Burq – “Mesures semi-classiques et mesures de défaut”, in Sém. Bourbaki (1996/97), Astérisque, vol. 245, Société Mathématique de France, 1997, Exp. No.826, p. 167–195. Zbl0954.35102MR1627111
- [9] J.-Y. Chemin – Fluides parfaits incompressibles, Astérisque, vol. 230, Société Mathématique de France, 1995. Zbl0829.76003MR1340046
- [10] R. Danchin – “Fluides légèrement compressibles et limite incompressible”, in Sém. Équations aux Dérivées Partielles, 2000-2001, École polytechnique, 2001, Exp. No. III, 19 pages. Zbl1061.35511MR1860675
- [11] —, “Zero Mach number limit for compressible flows with periodic boundary conditions”, Amer. J. Math. 124 (2002), no. 6, p. 1153–1219. Zbl1048.35075MR1939784
- [12] —, “Zero Mach number limit in critical spaces for compressible Navier-Stokes equations”, Ann. scient. Éc. Norm. Sup. série 35 (2002), no. 1, p. 27–75. Zbl1048.35054MR1886005
- [13] B. Desjardins & E. Grenier – “Low Mach number limit of viscous compressible flows in the whole space”, Proc. Roy. Soc. London Ser. A 455 (1999), no. 1986, p. 2271–2279. Zbl0934.76080MR1702718
- [14] B. Desjardins, E. Grenier, P.-L. Lions & N. Masmoudi – “Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions”, J. Math. Pures Appl. (9) 78 (1999), no. 5, p. 461–471. Zbl0992.35067MR1697038
- [15] B. Desjardins & C.-K. Lin – “A survey of the compressible Navier-Stokes equations”, Taiwanese J. Math. 3 (1999), no. 2, p. 123–137. Zbl0930.35121MR1692781
- [16] A. Dutrifoy & T. H’midi – “The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data”, C. R. Acad. Sci. Paris Sér. I Math. 336 (2003), no. 6, p. 471–474. Zbl1044.35044MR1975081
- [17] W. E – “Propagation of oscillations in the solutions of -D compressible fluid equations”, Comm. Partial Differential Equations 17 (1992), no. 3-4, p. 347–370. Zbl0760.35007MR1163429
- [18] C. Fermanian & P. Gérard – “Mesures semi-classiques et croisements de mode”, Bull. Soc. math. France 130 (2002), no. 1, p. 123–168. Zbl0996.35004MR1906196
- [19] I. Gallagher – “Asymptotics of the solutions of hyperbolic equations with a skew-symmetric perturbation”, J. Differential Equations150 (1998), p. 363–384. Zbl0921.35095MR1658597
- [20] P. Gérard – “Microlocal defect measures”, Comm. Partial Differential Equations16 (1991), p. 1761–1794. Zbl0770.35001MR1135919
- [21] J. Ginibre & G. Velo – “Generalized Strichartz inequalities for the wave equation”, J. Funct. Anal.133 (1995), p. 50–68. Zbl0849.35064MR1351643
- [22] E. Grenier – “Oscillatory perturbations of the Navier-Stokes equations”, J. Math. Pures Appl.76 (1997), p. 477–498. Zbl0885.35090MR1465607
- [23] G. Hagedorn – “Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gap”, Comm. Math. Phys.110 (1987), p. 519–524. Zbl0723.35068MR1099690
- [24] T. Hagstrom & J. Lorenz – “All-time existence of classical solutions for slightly compressible flows”, SIAM J. Appl. Math. 28 (1998), no. 3, p. 652–672. Zbl0907.76073MR1617767
- [25] —, “On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows”, Indiana Univ. Math. J. 51 (2002), no. 6, p. 1339–1387. Zbl1039.35085MR1948453
- [26] T. Iguchi – “The incompressible limit and the initial layer of the compressible Euler equation in ”, Math. Methods Appl. Sci. 20 (1997), no. 11, p. 945–958. Zbl0884.35127MR1458527
- [27] H. Isozaki – “Singular limits for the compressible Euler equation in an exterior domain”, J. reine angew. Math. 381 (1987), p. 1–36. Zbl0618.76073MR918838
- [28] —, “Wave operators and the incompressible limit of the compressible Euler equation”, Comm. Math. Phys. 110 (1987), no. 3, p. 519–524. Zbl0627.76081MR891951
- [29] —, “Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow”, Osaka J. Math. 26 (1989), no. 2, p. 399–410. Zbl0716.35065MR1017594
- [30] A. Joye – “Proof of the Landau-Zener formula”, Asymptotic Anal.9 (1994), p. 209–258. Zbl0814.35109MR1295294
- [31] T. Kato – Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980. Zbl0435.47001
- [32] S. Klainerman – “Global existence for nonlinear wave equations”, Comm. Pure Appl. Math.33 (1980), p. 43–101. Zbl0405.35056MR544044
- [33] S. Klainerman & M. Machedon – “Remark on Strichartz type inequalites”, Internat. Math. Res. Notices 5 (1996), p. 201–220, with an appendix of J. Bourgain and D. Tataru. Zbl0853.35062MR1383755
- [34] S. Klainerman & A. Majda – “Singular limits of quasilinear hyperbolic systems with large parameters, and the incompressible limit of compressible fluids”, Comm. Pure Appl. Math.34 (1981), p. 481–524. Zbl0476.76068MR615627
- [35] —, “Compressible and incompressible fluids”, Comm. Pure Appl. Math.35 (1982), p. 629–651. Zbl0478.76091MR668409
- [36] R. Klein – “Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics, I, One-dimensional flow”, J. Comput. Phys. 121 (1995), no. 2, p. 213–237. Zbl0842.76053MR1354300
- [37] H.-O. Kreiss, J. Lorenz & M.J. Naughton – “Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations”, Adv. in Appl. Mech. 12 (1991), no. 2, p. 187–214. Zbl0728.76084MR1101207
- [38] P. Lax – “Hyperbolic systems of conservation laws II”, Comm. Pure Appl. Math.10 (1957), p. 537–566. Zbl0081.08803MR93653
- [39] P.-L. Lions – Mathematical Topics in Fluid Mechanics, Vol. I, Incompressible Models, Oxford Science Publications, 1997. Zbl0866.76002
- [40] —, Mathematical Topics in Fluid Mechanics, Vol. II, Compressible Models, Oxford Science Publications, 1997. Zbl0908.76004
- [41] P.-L. Lions & N. Masmoudi – “Incompressible limit for a viscous compressible fluid”, J. Math. Pures Appl. 77 (1998), no. 6, p. 585–627. Zbl0909.35101MR1628173
- [42] —, “Une approche locale de la limite incompressible”, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 5, p. 387–392. Zbl0937.35132MR1710123
- [43] A. Majda – Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. Zbl0537.76001MR748308
- [44] A. Majda & S. Osher – “Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary”, Comm. Pure Appl. Math.28 (1975), p. 607–675. Zbl0314.35061MR410107
- [45] C. Marchioro & M. Pulvirenti – Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. Zbl0789.76002MR1245492
- [46] N. Masmoudi – “Asymptotic problems and compressible-incompressible limit”, in Advances in mathematical fluid mechanics (Paseky, 1999), Springer, Berlin, 2000, p. 119–158. Zbl0970.35119MR1863211
- [47] —, “Incompressible, inviscid limit of the compressible Navier-Stokes system”, Ann. Inst. H. Poincaré. Anal. Non Linéaire 18 (2001), no. 2, p. 199–224. Zbl0991.35058MR1808029
- [48] A. Meister – “Asymptotic single and multiple scale expansions in the low Mach number limit”, SIAM J. Appl. Math. 60 (1999), no. 1, p. 256–271. Zbl0941.35052MR1740844
- [49] G. Métivier & S. Schochet – “Limite incompressible des équations d’Euler non isentropiques”, in Sém. Équations aux Dérivées Partielles, 2000-2001, École polytechnique, 2001, Exp. No. X, 17 pages. Zbl1061.76074MR1860682
- [50] —, “The incompressible limit of the non-isentropic Euler equations”, Arch. Rational Mech. Anal. 158 (2001), no. 1, p. 61–90. Zbl0974.76072MR1834114
- [51] —, “Averaging theorems for conservative systems and the weakly compressible Euler equations”, J. Differential Equations 187 (2003), no. 1, p. 106–183. Zbl1029.34035MR1946548
- [52] C.D. Munz – “Computational fluid dynamics and aeroacoustics for low Mach number flow”, in Hyperbolic partial differential equations (Hamburg, 2001), Vieweg, Braunschweig, 2002, p. 269–320. MR1913809
- [53] T. Schneider, N. Botta, K.J. Geratz & R. Klein – “Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows”, J. Comput. Phys. 155 (1999), no. 2, p. 248–286. Zbl0968.76054MR1723333
- [54] S. Schochet – “The compressible Euler equations in a bounded domain : existence of solutions and the incompressible limit”, Comm. Math. Phys.104 (1986), p. 49–75. Zbl0612.76082MR834481
- [55] —, “Fast singular limits of hyperbolic PDEs”, J. Differential Equations114 (1994), p. 476–512. Zbl0838.35071MR1303036
- [56] P. Secchi – “On the incompressible limit of inviscid compressible fluids”, Ann. Univ. Ferrara Sez. VII (N.S.) 46 (2000), p. 21–33, in Navier-Stokes equations and related nonlinear problems (Ferrara, 1999). Zbl1006.76081MR1896921
- [57] —, “On the singular incompressible limit of inviscid compressible fluids”, J. Fluid Mech. 2 (2000), no. 2, p. 107–125. Zbl0965.35127MR1765773
- [58] T. Sideris – “Formation of singularities in three-dimensional compressible fluids”, Comm. Math. Phys. 101 (1985), no. 4, p. 475–485. Zbl0606.76088MR815196
- [59] L. Tartar – “H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations”, Proc. Roy. Soc. Edinburgh Sect. A115 (1990), p. 193–230. Zbl0774.35008MR1069518
- [60] S. Ukai – “The incompressible limit and the initial layer of the compressible Euler equation”, J. Math. Kyoto Univ. 26 (1986), no. 2, p. 323–331. Zbl0618.76074MR849223
- [61] V. Yudovitch – “Non stationary flows of an ideal incompressible fluid”, Zhurnal Vych Matematika3 (1963), p. 1032–1066. MR158189
- [62] R. Zeytounian – Asymptotic modelling of fluid flow phenomena, Fluid Mechanics and its Applications, vol. 64, Kluwer Academic Publishers, Dordrecht, 2002. Zbl1045.76001MR1894273
- [63] —, Theory and applications of nonviscous fluid flows, Springer-Verlag, Berlin, 2002. Zbl0992.76002MR1885859
Citations in EuDML Documents
top- Didier Bresch, Marguerite Gisclon, Chi-Kun Lin, An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
- Didier Bresch, Marguerite Gisclon, Chi-Kun Lin, An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
- Eduard Feireisl, Domain sensitivity in singular limits of compressible viscous fluids
- Thomas Alazard, Alentours de la limite incompressible