Moving mesh for the axisymmetric harmonic map flow
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 39, Issue: 4, page 781-796
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Alouges and M. Pierre, Mesh optimization for singular axisymmetric harmonic maps from the disc into the sphere. Numer. Math. To appear.
- F. Bethuel, J.-M. Coron, J.-M. Ghidaglia and A. Soyeur, Heat flows and relaxed energies for harmonic maps, in Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), Birkhäuser Boston, Boston, MA. Progr. Nonlinear Differential Equations Appl.7 (1992) 99–109.
- M. Bertsch, R. Dal Passo and R. van der Hout, Nonuniqueness for the heat flow of harmonic maps on the disk. Arch. Rational Mech. Anal.161 (2002) 93–112.
- H. Brezis and J.-M. Coron, Large solutions for harmonic maps in two dimensions. Comm. Math. Phys.92 (1983) 203–215.
- N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite element code. I. In one dimension. SIAM J. Sci. Comput.19 (1998) 728–765.
- K.-C. Chang, Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1989) 363–395.
- J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds. Amer. J. Math.86 (1964) 109–160.
- A. Freire, Uniqueness for the harmonic map flow from surfaces to general targets. Comment. Math. Helv.70 (1995) 310–338.
- A. Freire, Uniqueness for the harmonic map flow in two dimensions. Calc. Var. Partial Differential Equations3 (1995) 95–105.
- F. Hülsemann and Y. Tourigny, A new moving mesh algorithm for the finite element solution of variational problems. SIAM J. Numer. Anal.35 (1998) 1416–1438.
- M. Pierre, Weak BV convergence of moving finite elements for singular axisymmetric harmonic maps. SIAM J. Numer. Anal. To appear.
- E. Polak, Algorithms and consistent approximations, Optimization, Applied Mathematical Sciences124 (1997), Springer-Verlag, New York.
- J. Qing, On singularities of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom.3 (1995) 297–315.
- S. Rippa and B. Schiff, Minimum energy triangulations for elliptic problems. Comput. Methods Appl. Mech. Engrg.84 (1990) 257–274.
- M. Struwe, The evolution of harmonic maps, in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990). Math. Soc. Japan (1991) 1197–1203.
- P. Topping, Reverse bubbling and nonuniqueness in the harmonic map flow. Internat. Math. Res. Notices10 (2002) 505–520.