Heat flow and boundary value problem for harmonic maps
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: 6, Issue: 5, page 363-395
 - ISSN: 0294-1449
 
Access Full Article
topHow to cite
topKung-Ching, Chang. "Heat flow and boundary value problem for harmonic maps." Annales de l'I.H.P. Analyse non linéaire 6.5 (1989): 363-395. <http://eudml.org/doc/78184>.
@article{Kung1989,
	author = {Kung-Ching, Chang},
	journal = {Annales de l'I.H.P. Analyse non linéaire},
	keywords = {heat equation; minimax principle; parabolic system; harmonic map; Ljusternik-Schnirelmann},
	language = {eng},
	number = {5},
	pages = {363-395},
	publisher = {Gauthier-Villars},
	title = {Heat flow and boundary value problem for harmonic maps},
	url = {http://eudml.org/doc/78184},
	volume = {6},
	year = {1989},
}
TY  - JOUR
AU  - Kung-Ching, Chang
TI  - Heat flow and boundary value problem for harmonic maps
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1989
PB  - Gauthier-Villars
VL  - 6
IS  - 5
SP  - 363
EP  - 395
LA  - eng
KW  - heat equation; minimax principle; parabolic system; harmonic map; Ljusternik-Schnirelmann
UR  - http://eudml.org/doc/78184
ER  - 
References
top- [BeC1] V. Benci and J.M. Coron, The Dirichlet Problem for Harmonic Maps From the Disk Into the Euclidean n-Sphere, Analyse nonlineaire, Vol. 2, No. 2, 1985, pp. 119-141. Zbl0597.35022MR794003
 - [BrC1] H. Brezis and J.M. Coron, Large Solutions for Harmonic Maps in Two Dimensions, Comm. Math. Phys., T. 92, 1983, pp. 203-215. Zbl0532.58006MR728866
 - [C1] K.C. Chang, Infinite Dimensional Morse Theory and its Applications, Univ. de Montréal, 1985. Zbl0609.58001MR837186
 - [EL1] J. Eells and L. Lemaire, A Report on Harmonic Maps, Bull. London Math. Soc., Vol. 16, 1978, pp. 1-68. Zbl0401.58003MR495450
 - [ES1] J. Eells and J.H. Sampson, Harmonic Mappings of Riemannian Manifolds, A.J.M., vol. 86, 1964, pp. 109-160. Zbl0122.40102MR164306
 - [EW1] J. Eells and J.C. Wood, Restrictions on Harmonic Maps of Surfaces, Topology, Vol. 15, 1976, pp. 263-266. Zbl0328.58008MR420708
 - [F1] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. Zbl0144.34903MR181836
 - [H1] R. Hamilton, Harmonic Maps of Manifolds with Boundary, L.N.M. No. 471, Springer, Berlin-Heidelberg-New York, 1975. Zbl0308.35003MR482822
 - [J1] J. Jost, Ein Existenzbeweis für harmonische Abbildungen, dis ein Dirichlet-problem lösen, mittels der Methode der Wäumeflusses, Manusc. Math., Vol. 38, 1982, pp. 129-130. Zbl0486.58011
 - [J2] J. Jost, The Dirichlet problem for harmonic maps from a surface with boundary onto a 2-sphere with nonconstant boundary values, J. Diff. Geometry, Vol. 19, 1984, pp. 393-401. Zbl0551.58012MR755231
 - [LSU1] O.A. Ladyszenskaya, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, A.M.S. Transl. Math. Monogr.23, Providence, 1968.
 - [L1] L. Lemaire, Boundary Value Problems for Harmonic and Minimal Maps of Surfaces Into Manifolds, Ann. Scuola Norm. Sup. Pisa, (4), 9, 1982, pp. 91-103. Zbl0532.58004MR664104
 - [N1] S.M. Nikol'ski, Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, 1975. Zbl0307.46024MR374877
 - [SU1] J. Sacks and K. Uhlenbeck, The Existence of Minimal Immersions of Two Spheres, Ann. Math., Vol. 113, 1981, pp. 1-24. Zbl0462.58014MR604040
 - [St1] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970. Zbl0207.13501MR290095
 - [S1] M. Struwe, On the Evolution of Harmonic Mappings, Commet. Math. Helvetici, Vol. 60, 1985, pp. 558-581. Zbl0595.58013MR826871
 - [S2] M. Struwe, The Evolution of Harmonic Maps (Part I) Heat-Flow Methods for Harmonic Maps of Surfaces and Applications to Free Boundary Problems, I.C.T.P., 1988. MR965544
 - [S3] M. Struwe, The Evolution of Harmonic Maps (Part II). On the Evolution of Harmonic Maps in Higher Dimensions, Jour. Diff. Geometry (to appear). Zbl0631.58004MR1159304
 - [U1] K. Uhlenbeck, Morse Theory by Perturbation Methods with Applications to Harmonic Maps, T.A.M.S., 1981. Zbl0509.58012MR626490
 - [VW1] W. Von Wahl, Verhalten der Lösungen parabolisher Gleischungen für t → ∞ mit Lösbarkeit in Grossen, Nachr. Akad. Wiss. Göttingen, 51981. MR656525
 - [W1] R.H. Wang, A Fourier Method on the Lp Theory of Parabolic and Elliptic Boundary Value Problems, Scientia Sinica, 1965. Zbl0158.11801
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.