Weak solutions for a well-posed Hele-Shaw problem
S. N. Antontsev; A. M. Meirmanov; V. V. Yurinsky
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 2, page 397-424
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAntontsev, S. N., Meirmanov, A. M., and Yurinsky, V. V.. "Weak solutions for a well-posed Hele-Shaw problem." Bollettino dell'Unione Matematica Italiana 7-B.2 (2004): 397-424. <http://eudml.org/doc/194598>.
@article{Antontsev2004,
abstract = {We analyze existence and uniqueness of weak solutions to the well-posed Hele-Shaw problem under general conditions on the fixed boundaries and non-homogeneous governing equation in the unknown domain and non-homogeneous dynamic condition on the free boundary. Our approach allows us also to minimize the restrictions on the boundary and initial data. We derive several estimates on the solutions in $BV$ spaces, prove a comparison theorem, and show that the solution depends continuously on the initial and boundary data.},
author = {Antontsev, S. N., Meirmanov, A. M., Yurinsky, V. V.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {397-424},
publisher = {Unione Matematica Italiana},
title = {Weak solutions for a well-posed Hele-Shaw problem},
url = {http://eudml.org/doc/194598},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Antontsev, S. N.
AU - Meirmanov, A. M.
AU - Yurinsky, V. V.
TI - Weak solutions for a well-posed Hele-Shaw problem
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/6//
PB - Unione Matematica Italiana
VL - 7-B
IS - 2
SP - 397
EP - 424
AB - We analyze existence and uniqueness of weak solutions to the well-posed Hele-Shaw problem under general conditions on the fixed boundaries and non-homogeneous governing equation in the unknown domain and non-homogeneous dynamic condition on the free boundary. Our approach allows us also to minimize the restrictions on the boundary and initial data. We derive several estimates on the solutions in $BV$ spaces, prove a comparison theorem, and show that the solution depends continuously on the initial and boundary data.
LA - eng
UR - http://eudml.org/doc/194598
ER -
References
top- DAMLAMIAN, A., Some results on the multi-phase Stefan problem, Comm. Part. Diff. Eq., 2 (1977), 1017-1044. Zbl0399.35054MR487015
- ELLIOTT, C. M.- JANOVSKY, V., A variational inequality approach to the Hele-Shaw flow with a moving boundary, Proc. R. Soc. Edinb., 88A (1981), 97-107. Zbl0455.76043MR611303
- GÖTZ, I. G.- ZALTZMAN, B., Nonincrease of mushy region in nonhomogeneous Stefan problem, Quart. Appl. Math., Vol. XLIX, 4 (1991), 741-746. Zbl0756.35119MR1134749
- GUSTAFSSON, B., Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows, SIAM J. Math. Anal., 16 (1985), 279-300. Zbl0605.76043MR777468
- HOWISON, S. D., Complex variable methods in Hele-Shaw moving boundary problems, Eur. J. Appl. Math., 3, 3 (1992), 209-234. Zbl0759.76022MR1182213
- KAMIN, S. L. (KAMENOMOSTSKAYA), On the Stefan problem, Mat. Sb. (N.S.), 53 (1961), 489-514 (Russian). Zbl0102.09301
- KINDERLEHRER, D.- STAMPACCHIA, G., An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. Zbl0457.35001MR567696
- KRUZHKOV, S. N., First order quasilinear equations in several independent variables, Math. USSR Sbornik, 10 (1970), 217-243. Zbl0215.16203
- LADYZHENSKAYA, O. A.- SOLONNIKOV, V. A.- URAL'TSEVA, N. A., Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (English translation: series Transl. Math. Monographs, v. 23, AMS, Providence, 1968.) Zbl0174.15403
- LADYZHENSKAYA, O. A.- URAL'TSEVA, N. A., Linear and Quasilinear Elliptic Equations, Nauka, Moscow, 1973. (English ed: Mathematics in Science and Engineering (ed. by R. Bellman), vol. 46, Academic Press, New York, 1968. Zbl0164.13002
- LOURO, B.- RODRIGUES, J. F., Remarks on the quasisteady one-phase Stefan problem, Proc. R. Soc. Edinb., 102A (1986), 263-275. Zbl0608.35081MR852360
- MEIRMANOV, A. M., The Stefan Problem, Walter de Gruyter, Berlin, New York, 1992. Zbl0751.35052MR1154310
- OCKENDON, J. R.- HOWISON, S. D.- LACEY, A. A., Mushy regions in negative squeeze films. (Submitted for publication) Zbl1034.76004
- OLEINIK, O. A., A method of solution of the general Stefan problem, Dokl. Akad. Nauk. SSSR, 135 (1960), 1054-1057, Soviet Math. Dokl., 1 (1960), 1350-1354. Zbl0131.09202MR125341
- PRIMICERIO, M.- RODRIGUES, J. F., The Hele-Shaw problem with nonlocal injection condition, Kawarada H. (ed.), Proc. Int. Conf. Nonlinear Math. Probl. in Industry, Tokyo, Gakkotosho, Gakuto Int. Ser. Math. Sci. Appl., 2 (1993), 375-390. Zbl0875.35157MR1370478
- RUBINSTEIN, L. I., The Stefan Problem, Zvaigne, Riga, 1967. (English ed.: Transl. Math. Monographs, Vol. 27, AMS, Providence, 1971.) Zbl0219.35043MR222436
- VISINTIN, A., Models of Phase Transitions, Progress in Nonlinear Differential Equations and Their Applications, vol. 28. Birkhäuser, Boston-Basel-Berlin, 1996. Zbl0882.35004MR1423808
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.