Régularité Gevrey des solutions de l'équation de Monge-Ampère réelle

Saoussen Kallel-Jallouli

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 3, page 629-656
  • ISSN: 0392-4041

Abstract

top
0.1 {ll (uij+aij(x,u, u))=K(x) f(x,u, u) in Rn u| = . where the curvature K satisfies: K > 0 in Ω , K = 0 d K 0 on Ω , and f is strictly positive. We prove that if the data Ω , a i j , K , f , φ are in a Gevrey class, every C 3 solution ( C 2 if n = 2 ) of problem 0.1 is in the same Gevrey class on Ω ¯ .

How to cite

top

Kallel-Jallouli, Saoussen. "Régularité Gevrey des solutions de l'équation de Monge-Ampère réelle." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 629-656. <http://eudml.org/doc/194637>.

@article{Kallel2003,
author = {Kallel-Jallouli, Saoussen},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {fre},
month = {10},
number = {3},
pages = {629-656},
publisher = {Unione Matematica Italiana},
title = {Régularité Gevrey des solutions de l'équation de Monge-Ampère réelle},
url = {http://eudml.org/doc/194637},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Kallel-Jallouli, Saoussen
TI - Régularité Gevrey des solutions de l'équation de Monge-Ampère réelle
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 629
EP - 656
LA - fre
UR - http://eudml.org/doc/194637
ER -

References

top
  1. BAOUENDI, M. S.- GOULAOUIC, C., Régularité analytique et itérés d'opérateurs elliptiques dégénérés; Applications, Journal of Functional Analysis, 9 (1972), 208-248. Zbl0243.35044
  2. BAOUENDI, M. S.- GOULAOUIC, C., Etude de l'analyticité et de la régularité Gevrey pour une classe d'opérateurs elliptiques dégénérés, Extrait des Annales Scientifiques de l'Ec. Norm. Sup., 4ème série, t. 4, fasc. 1, 1971. Zbl0231.35032MR287159
  3. CAFFARELLI, L.- NIRENBERG, L.- SPRUCK, J., The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation, Comm. on Pure and Appl. Math., Vol. XXXVII (1984), 369-402. Zbl0598.35047MR739925
  4. CHENG, S. Y.- YAU, S. T., On the regularity of the solution of the n -dimentional Minkowski problem, Comm. on Pure and Appl. Math., Vol. XXIX (1976). Zbl0363.53030MR423267
  5. DERRIDJ, M.- ZUILY, C., Régularité analytique et Gevrey d'opérateurs elliptiques dégénérés, J. Math. Pures et Appl., 52 (1973), 65-80. Zbl0263.35020MR390474
  6. EL BARAKA, A., Estimations Höldériennes et L p pour une classe de problèmes linéaires singulièrs. Application à la régularité des solutions de problèmes aux limites singuliers non linéaires, Thèse de 3ème cycle (1987). 
  7. HONG, J.- ZUILY, C., L p et Hölder estimates for a class of degenerate elliptic boundary value problems. Application to the Monge-Ampère equation, Comm. in Partial Diff. Equ., 16 (1991), 997-1031. Zbl0742.35009MR1116851
  8. HÖRMANDER, L., Linear partial differential operators, Springer Verlag, 1963. Zbl0108.09301MR404822
  9. LIN, C. S., The local isometric embedding in R 3 of 2 -dimentional Riemannian manifolds with non negative curvature, J. Diff. Geometry, 21 (1985), 213-230. Zbl0584.53002MR816670
  10. POGORELOV, A. V., On the regularity of generalized solutions of the equation det 2 u x i x j = ϕ x 1 , , x n > 0 , Soviet Math. Dokl., Vol. 12 (1971), no. 5=Dokl. Nank SSSR, Tom. 200 (1971), no. 3. Zbl0246.35014MR293227
  11. POGORELOV, A. V., The Minkowski multidimentional problem, USSR Academy of Sciences, 1978. Zbl0387.53023
  12. ZUILY, C., Sur la régularité des solutions non strictement convexes de l'équation de Monge-Ampère réelle, Annali. Della Sc. N. Sup. di Pisa, Série 4, Vol. 15, 1988. Zbl0702.35050MR1029853

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.