Da Tarski a Hrushovski: Nascita e splendori della Teoria dei Modelli

Annalisa Marcja

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-B, Issue: 2, page 287-300
  • ISSN: 0392-4041

How to cite

top

Marcja, Annalisa. "Da Tarski a Hrushovski: Nascita e splendori della Teoria dei Modelli." Bollettino dell'Unione Matematica Italiana 3-B.2 (2000): 287-300. <http://eudml.org/doc/194644>.

@article{Marcja2000,
author = {Marcja, Annalisa},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {expository paper; model theory},
language = {ita},
month = {6},
number = {2},
pages = {287-300},
publisher = {Unione Matematica Italiana},
title = {Da Tarski a Hrushovski: Nascita e splendori della Teoria dei Modelli},
url = {http://eudml.org/doc/194644},
volume = {3-B},
year = {2000},
}

TY - JOUR
AU - Marcja, Annalisa
TI - Da Tarski a Hrushovski: Nascita e splendori della Teoria dei Modelli
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/6//
PB - Unione Matematica Italiana
VL - 3-B
IS - 2
SP - 287
EP - 300
LA - ita
KW - expository paper; model theory
UR - http://eudml.org/doc/194644
ER -

References

top
  1. AX, J.- KOCHEN, S., Diophantine problems over local fields I, Am. J. Math., 87 (1965), 605-630. Zbl0136.32805MR184930
  2. AX, J.- KOCHEN, S., Diophantine problems over local fields II: A complete set of axioms for p -adic number theory, Am. J. Math., 87 (1965), 631-648. Zbl0136.32805MR184931
  3. AX, J.- KOCHEN, S., Diophantine problems over local fields III: Decidable fields, Ann. of Math., 83 (1966), 437-456. Zbl0223.02050MR201378
  4. BLUM, L., Generalized Algebraic Theories, Thesis (1968) M.I.T. Press, Cambridge, MA. 
  5. BUIUM, A., Intersections in jet spaces and a conjecture of S. Lang, Annals of Math., 136 (1992), 557-567. Zbl0817.14021MR1189865
  6. CHATZIDAKIS, Z.- HRUSHOVSKI, E., Model Theory of difference fields, Trans. Amer. Math. Soc., 351 Nr. 8 (1999) (in corso di stampa). Zbl0922.03054MR1652269
  7. CHATZIDAKIS, Z.- HRUSHOVSKI, E.- PETERZIL, Y., Model Theory of difference fields II (preprint). Zbl0922.03054MR1652269
  8. EKLOF, P.- SABBAGH, G., Model Completions and Modules, Ann. Math. Logic, 2 (1970-71), 251-295. Zbl0227.02029MR277372
  9. ERŠOV, U. L., On the elementary theory of maximal normed fields, Dokl. Akad. Nauk. SSSR, 165 (1965) (Traduzione inglese in Sov. Math. Dokl., 1390-1393). Zbl0152.02403MR190140
  10. ERŠOV, U. L., Fields with a solvable theory, Dokl. Akad. Nauk. SSSR, 174 (1967), 19-20 (Traduzione inglese in Sov. Math. Dokl., 8, 575-576). Zbl0153.37201MR214575
  11. FALTINGS, G., Endlichkeitssatze fur abelsche Varietaten uber Zahlkorpen, Inventiones Math., 73 (1983), 349-366. Zbl0588.14026MR718935
  12. FALTINGS, G., The general case of S. Lang's conjecture, in Barsotti Symposium in Algebraic Geometry, Academic Press, 1994. Zbl0823.14009MR1307396
  13. FISHER, E., Abelian structures, Yale University 1974/75. Zbl0414.18001
  14. HINDRY, M., Autour d'une conjecture de Serge Lang, Inventiones Math., 94 (1988), 575-603. Zbl0638.14026MR969244
  15. HRUSHOVSKI, E., The first order of the Frobenius (preprint 96). 
  16. HRUSHOVSKI, E., The Mordell Lang conjecture for function fields, Journal of AMS, 9 (1996), 667-690. Zbl0864.03026MR1333294
  17. HRUSHOVSKI, E., Difference fields and the Manin-Mumford conjecture (preprint 1996). 
  18. LANG, S., Number Theory III: Diophantine Geometry, Encyclopedia of Math. Sciences, 60, Springer Verlag (1991). Zbl0744.14012MR1112552
  19. MACINTYRE, A., On algebraically closed groups, Ann. Math., 95 (1972), 53-97. Zbl0254.20021MR317928
  20. MACINTYRE, A., Generic automorphisms of fields, Ann. P. Appl. Logic, 88 (1997), 165-180. Zbl0891.03015MR1600899
  21. MACINTYRE, A., Nonstandard Frobenius (in preparazione). 
  22. MANIN, U., Rational points of algebraic curves over function fields, Izv. Akad. Nauk SSSR, 27 (1963), 1395-1440 (Tranlations of AMS, 344 (1966), 189-234). Zbl0178.55102MR157971
  23. MARCJA, A.- TOFFALORI, C., Introduzione alla Teoria dei Modelli, Quaderni dell'Unione Matematica Italiana43, Pitagora Editrice, Bologna (1998). Zbl0937.03044
  24. PILLAY, A., Model theory and diophantine geometry, Bull. Amer. Math. Soc., 34 (1997), 405-422. Zbl0884.03040MR1458425
  25. PREST, M., Model Theory and Modules, London Mathematical Society Lecture Notes Series130, Cambridge University Press (1988). Zbl0634.03025MR933092
  26. RAYNAUD, M., Sous-variétés d'une variété abélienne et points de torsion, in Arithmetic and Geometry, vol. I, Birkhauser (1983). Zbl0581.14031MR717600
  27. ROBINSON, A., On the concept of a differentially closed field, Bull. Res. Council Israel, sect. F, 8F (1959), 113-128. Zbl0221.12054MR125016
  28. SAMUEL, P., Complements a un article de Hans Grauert sur la conjecture de Mordell, Pub. Math. IHES, 29 (1966), 55-62. Zbl0144.20102MR204430
  29. SEIDENBERG, A., A new decision method for elementary algebra, Ann. Math. sec. 2, 60 (1954), 365-374. Zbl0056.01804MR63994
  30. SHELAH, S., Uniqueness and characterization of prime models over sets for totally transcendental first-order theories, J. Symbolic Logic, 37 (1972), 107-113. Zbl0247.02047MR316239
  31. TARSKI, A., A decision method for elementary algebra and geometry (prepared for publication by J. C. C. Mc Kinsey), U.S. Air Force Project RAND, R-109, the RAND Corporation, Santa Monica, California (1948), iv+60 pp. Zbl0035.00602MR28796
  32. TARSKI, A., Contributions to the Theory of Models I, Indag. Math., 16 (1954), 572-581. Zbl0058.24702MR66301
  33. TERJANIAN, G., Un contre-example a une conjecture d'Artin, C.R. Acad. Sci. Paris Ser. A, 262 (1966), 612. Zbl0133.29705MR197450
  34. TOFFALORI, C., Perché Hrushovski e Wilkie hanno vinto gli ultimi premi Karp, Quaderni Dipartimento di Matematica Università di Camerino2 (1999). 
  35. VOJTA, P., Integral points on subvarieties of semi-abelian varieties, Inventiones Math. Zbl1011.11040
  36. WOOD, C., The model theory of differential fields of characteristic p 0 , Proc. Am. Math. Soc., 40 (1973), 577-584. Zbl0273.02039MR329887
  37. WOOD, C., Prime model extensions for differential fields of characteristic p 0 , J. Symbolic Logic, 39 (1974), 469-477. Zbl0311.02064MR357109
  38. ZIEGLER, M., Model theory of modules, Ann. Pure Appl. Logic, 26 (1984), 149-213. Zbl0593.16019MR739577

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.