When is Z α seminormal or t -closed?

Martine Picavet-L'Hermitte

Bollettino dell'Unione Matematica Italiana (1999)

  • Volume: 2-B, Issue: 1, page 189-217
  • ISSN: 0392-4041

How to cite

top

Picavet-L'Hermitte, Martine. "When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?." Bollettino dell'Unione Matematica Italiana 2-B.1 (1999): 189-217. <http://eudml.org/doc/194663>.

@article{Picavet1999,
author = {Picavet-L'Hermitte, Martine},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {-closure property; seminormality; algebraic integer; Dedekind domain; cubic orders},
language = {eng},
month = {2},
number = {1},
pages = {189-217},
publisher = {Unione Matematica Italiana},
title = {When is $\mathbb\{Z\}[\alpha]$ seminormal or $t$-closed?},
url = {http://eudml.org/doc/194663},
volume = {2-B},
year = {1999},
}

TY - JOUR
AU - Picavet-L'Hermitte, Martine
TI - When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?
JO - Bollettino dell'Unione Matematica Italiana
DA - 1999/2//
PB - Unione Matematica Italiana
VL - 2-B
IS - 1
SP - 189
EP - 217
LA - eng
KW - -closure property; seminormality; algebraic integer; Dedekind domain; cubic orders
UR - http://eudml.org/doc/194663
ER -

References

top
  1. ALBU, T., On a paper of Uchida concerning simple finite extensions of Dedekind domains, Osaka J. Math., 16 (1979), 65-69. Zbl0404.13014MR527017
  2. ANDERSON, D. F.- DOBBS, D. E.- HUCKABA, J. A., On seminormal overrings, Comm. Algebra, 10 (1982), 1421-1448. Zbl0496.13001MR662709
  3. DOBBS, D. E.- FONTANA, M., Seminormal rings generated by algebraic integers, Matematika, 34 (1987), 141-154. Zbl0619.13002MR933493
  4. FERRAND, D.- OLIVIER, J. P., Homomorphismes minimaux d'anneaux, J. Algebra, 16 (1970), 461-471. Zbl0218.13011MR271079
  5. MAURY, G., La condition «intégralement clos» dans quelques structures algébriques, Ann. Sci. Ecole Norm. Sup., 78 (1961), 31-100. Zbl0254.13011MR141621
  6. PICAVET, G.- PICAVET-L'HERMITTE, M., Morphismes t -clos, Comm. Algebra, 21 (1993), 179-219. Zbl0774.13002MR1194555
  7. PICAVET, G.- PICAVET-L'HERMITTE, M., Anneaux t -clos, Comm. Algebra, 23 (1995), 2643-2677. Zbl0857.13021MR1330804
  8. PICAVET-L'HERMITTE, M., Decomposition of order morphisms into minimal morphisms, Math. J. Toyama Univ., 19 (1996), 17-45. Zbl0883.13005MR1427684
  9. SAMUEL, P., Théorie Algébrique des Nombres (Hermann, Paris) 1967. Zbl0146.06402MR215808
  10. SWAN, R. G., On seminormality, J. Algebra, 67 (1980), 210-229. Zbl0473.13001MR595029
  11. TANIMOTO, H., Normality, seminormality and quasinormality of Z m n , Hiroshima Math. J., 17 (1987), 29-40. Zbl0627.13003MR886979
  12. UCHIDA, K., When is Z α the ring of the integers?, Osaka J. Math., 14 (1977), 155-157. Zbl0358.13006MR450255

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.