Applicazioni del teorema di Nekhoroshev alla meccanica celeste

Giancarlo Benettin

Bollettino dell'Unione Matematica Italiana (2001)

  • Volume: 4-B, Issue: 1, page 71-95
  • ISSN: 0392-4033

Abstract

top
The application of Nekhoroshev theory to selected physical systems, interesting for Celestial Mechanics, is here reviewed. Applications include the stability of motions in the weakly perturbed Euler-Poinsot rigid body and the stability of the so-called Lagrangian equilibria L 4 , L 5 in the spatial circular restricted three-body problem. The difficulties to be overcome, which require a nontrivial extension of the standard Nekhoroshev theorem, are the presence of singularities in the fiber structure the phase space, and the presence of «degenerate» variables (actions appearing in the perturbation, but not in the unperturbed system).

How to cite

top

Benettin, Giancarlo. "Applicazioni del teorema di Nekhoroshev alla meccanica celeste." Bollettino dell'Unione Matematica Italiana 4-B.1 (2001): 71-95. <http://eudml.org/doc/194696>.

@article{Benettin2001,
author = {Benettin, Giancarlo},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {perturbed Euler-Poinsot rigid body; stability of Lagrangian equilibria},
language = {ita},
month = {2},
number = {1},
pages = {71-95},
publisher = {Unione Matematica Italiana},
title = {Applicazioni del teorema di Nekhoroshev alla meccanica celeste},
url = {http://eudml.org/doc/194696},
volume = {4-B},
year = {2001},
}

TY - JOUR
AU - Benettin, Giancarlo
TI - Applicazioni del teorema di Nekhoroshev alla meccanica celeste
JO - Bollettino dell'Unione Matematica Italiana
DA - 2001/2//
PB - Unione Matematica Italiana
VL - 4-B
IS - 1
SP - 71
EP - 95
LA - ita
KW - perturbed Euler-Poinsot rigid body; stability of Lagrangian equilibria
UR - http://eudml.org/doc/194696
ER -

References

top
  1. ANDOYER, H., Cours de Méchanique Celeste (Gautier-Villars, Paris1923). JFM49.0665.04
  2. BENETTIN, G.- CARATI, A.- GALLAVOTTI, G.: A rigorous implementation of the Landau-Teller approximation for adiabatic invariants, Nonlinearity, 10 (1997), 479-505. Zbl0907.58057MR1438264
  3. BENETTIN, G.- CHERUBINI, A. M.- FASSÒ, F., Regular and chaotic behaviour of rigid bodies in fast rotation: a numerical study, In corso di stesura. 
  4. BENETTIN, G.- FASSÒ, F., Fast rotations of the symmetric rigid body: a general study by Hamiltonian perturbation theory, Part I, Nonlinearity, 9 (1996), 137-186. Zbl0925.70111MR1374002
  5. BENETTIN, G.- FASSÒ, F., Classical «freezing» of plane rotations: a proof of the Boltzmann-Jeans Conjecture, Journ. Stat. Phys., 63 (1991), 737. MR1115811
  6. BENETTIN, G.- GALLAVOTTI, G., Stability of Motions near Resonances in Quasi Integrable Hamiltonian Systems, Journ. Stat. Phys., 44 (1986), 293. Zbl0636.70018MR857061
  7. BENETTIN, G.- FASSÒ, F.- GUZZO, M., Fast rotations of the symmetric rigid body, a study by Hamiltonian perturbation theory. Part II, Gyroscopic rotations, Nonlinearity, 10 (1997), 1695-1717. Zbl0920.70009MR1483561
  8. BENETTIN, G.- FASSÒ, F.- GUZZO, M., Nekhoroshev-stability of L 4 and L 5 in the spatial restricted three-body problem, Regular and Chaotic Dynamics, 3 (1998), 56-72. Zbl0934.70010MR1704969
  9. BENETTIN, G.- FERRARI, G.- GALGANI, L.- GIORGILLI, A., An Extension of the Poincaré-Fermi Theorem on the Non-Existence of Invariant Manifolds in Nearly-Integrable Hamiltonian Systems, Nuovo Cimento B, 72 (1982), 137-148. MR689827
  10. BENETTIN, G.- GALGANI, L.- GIORGILLI, A., A Proof of Nekhoroshev Theorem for Nearly-Integrable Hamiltonian Systems, Celestial Mechanics, 37 (1985), 1-25. Zbl0602.58022MR830795
  11. BENETTIN, G.- GALGANI, L.- GIORGILLI, A., Realization of Holonomic Constraints and Freezing of High Frequency Degrees of Freedom, in the Light of Classical Perturbation Theory. Part I, Comm. Math. Phys., 113 (1987), 87-103. Zbl0646.70013MR918407
  12. BENETTIN, G.- GALGANI, L.- GIORGILLI, A., Realization of Holonomic Constraints and Freezing of High-Frequency Degrees of Freedom in the Light of Classical Perturbation Theory. Part II, Comm. Math. Phys., 121 (1989), 557-601. Zbl0679.70015MR990993
  13. DEPRIT, A., Free rotation of a rigid body studied in phase plane, Am. J. Phys., 55 (1967), 424. 
  14. FASSÒ, F., The Euler-Poinsot top, a non-commutatively integrable system without global action-angle coordinates, J. Appl. Math. Phys., 47 (1996), 953-976. Zbl0895.70005MR1424038
  15. FASSÒ, F.- GUZZO, M.- BENETTIN, G., Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, Comm. Math. Phys., 197 (1998), 347-360. Zbl0928.37017MR1652750
  16. FASSÒ, F.- LEWIS, DEBRA, Stability properties of the Riemann ellipsoids, preprint 2000. Zbl1014.76010MR1847428
  17. GALLAVOTTI, G., Quasi-Integrable Mechanical Systems, in Critical phenomena, Random Systems, Gauge Theories, edito da K. Osterwalder and R. Stora, Les Houches, Session XLIII, 1984 (North-Holland, Amsterdam1986). Zbl0662.70022MR880522
  18. GIORGILLI, A.- DELSHAMS, A.- FONTICH, E.- GALGANI, L.- SIMÓ, C., Effective Stability for a Hamiltonian System near an Elliptic Equilibrium Point, with an Application to the Restricted three Body Problem, J. Diff. Eq., 77 (1989), 167-198. Zbl0675.70027MR980547
  19. GUZZO, M.- FASSÒ, F.- BENETTIN, G., On the stability of elliptic equilibria, Math. Phys. Electronic Journal, Vol. 4, No. 1 (1998). Zbl0891.58021MR1600248
  20. Rigorous estimates for the series expansions of Hamiltonian perturbation theory, Celestial Mech., 37 (1985), 95-112. MR838181
  21. GIORGILLI, A., Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point, Ann. Inst. Henri Poincaré - Physique Thèorique, 48 (1988), 423-439. Zbl0669.34002MR969174
  22. GUZZO, M.- MORBIDELLI, A., Construction of a Nekhoroshev like result for the asteroid belt dynamical system, Cel. Mech. & Dyn. Astr., 66 (1997), 255-292. Zbl0883.58032
  23. GUZZO, M., Nekhoroshev stability of quasi-integrable degenerate Hamiltonian Systems, Regular and Chaotic Dynamics, 4 (1999), 78-102. Zbl1012.37044MR1781159
  24. GUZZO, M.- MORBIDELLI, A., Construction of a Nekhoroshev like result for the asteroid belt dynamical system, Cel. Mech. & Dyn. Astr., 66 (1997), 255-292. Zbl0883.58032
  25. LOCHAK, P., Canonical perturbation theory via simultaneous approximation, Russ. Math. Surv., 47 (1992), 57-133. Zbl0795.58042MR1209145
  26. LOCHAK, P.- NEISHTADT, A. I., Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2 (1992), 495-499. Zbl1055.37573MR1195881
  27. MORBIDELLI, A.- GUZZO, M., The Nekhoroshev theorem and the Asteroid Belt dynamical system, Cel. Mech. & Dyn. Astr., 65 (1997), 107-136. Zbl0891.70007
  28. NEKHOROSHEV, N. N., Behaviour of Hamiltonian systems close to integrability, Funct. Anal. Appl., 5 (1971), 338-339. (Funk. An. Ego Prilozheniya, 5 (1971), 82-83). Zbl0254.70015
  29. NEKHOROSHEV, N. N., An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Usp. Mat. Nauk, 32:6 (1977), 5-66 (Russ. Math. Surv., 32:6 (1977), 1-65). Zbl0389.70028MR501140
  30. NIEDERMAN, L., Nonlinear stability around an elliptic equilibrium point in an Hamiltonian system, Nonlinearity, 11 (1998), 1465-1479. Zbl0917.58015MR1660357
  31. POINCARÉ, H., Les Méthodes Nouvelles de la Méchanique Céleste, Vol. 1 (Gautier-Villars, Paris, 1892). JFM30.0834.08
  32. PÖSCHEL, J., Nekhoroshev estimates for quasi-convex Hamiltonian Systems, Math. Z., 213 (1993), 187-216. Zbl0857.70009MR1221713

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.