Rigorous results on the power expansions for the integrals of a hamiltonian system near an elliptic equilibrium point

Antonio Giorgilli

Annales de l'I.H.P. Physique théorique (1988)

  • Volume: 48, Issue: 4, page 423-439
  • ISSN: 0246-0211

How to cite

top

Giorgilli, Antonio. "Rigorous results on the power expansions for the integrals of a hamiltonian system near an elliptic equilibrium point." Annales de l'I.H.P. Physique théorique 48.4 (1988): 423-439. <http://eudml.org/doc/76408>.

@article{Giorgilli1988,
author = {Giorgilli, Antonio},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hamiltonian; Poisson bracket; perturbation scheme; freezing of harmonic actions},
language = {eng},
number = {4},
pages = {423-439},
publisher = {Gauthier-Villars},
title = {Rigorous results on the power expansions for the integrals of a hamiltonian system near an elliptic equilibrium point},
url = {http://eudml.org/doc/76408},
volume = {48},
year = {1988},
}

TY - JOUR
AU - Giorgilli, Antonio
TI - Rigorous results on the power expansions for the integrals of a hamiltonian system near an elliptic equilibrium point
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 423
EP - 439
LA - eng
KW - Hamiltonian; Poisson bracket; perturbation scheme; freezing of harmonic actions
UR - http://eudml.org/doc/76408
ER -

References

top
  1. [1] G.D. Birkhoff, Dynamical systems, New York, 1927. Zbl53.0732.01JFM53.0732.01
  2. [2] E.T. Whittaker, On the adelphic integral of the differential equations of dynamics. Proc. Roy Soc. Edinburgh, Sect. A, t. 37, 1916, p. 95-109. Zbl46.1173.02JFM46.1173.02
  3. E.T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, London, 1970, p. 432 ff. 
  4. [3] T.M. Cherry, On integrals developable about a singular point of a Hamiltonian system of differential equations. Proc. Camb. Phil. Soc., t. 22, 1924, p. 325-349. Zbl50.0305.01JFM50.0305.01
  5. T.M. Cherry, On integrals developable about a singular point of a Hamiltonian system of differential equations. II. Proc. Camb. Phil. Soc., t. 22, 1924, p. 510-533. Zbl51.0333.02JFM51.0333.02
  6. [4] F.G. Gustavson, On constructing formal integrals of a Hamiltonian system near an equilibrium point. Astron. J., t. 71, 1966, p. 670-686. 
  7. J.K. Moser, Lectures on Hamiltonian systems. Mem. Amer. Math. Soc., t. 81, 1968, p. 11 ff. Zbl0172.11401MR230498
  8. [5] G. Contopoulos, A third integral of motion in a Galaxy. Z. Astrophys., t. 49, 1960, p. 273-291. Zbl0099.45007MR114635
  9. G. Contopoulos, Resonant case and small divisors in a third integral of motion. I. Astron. J., t. 68, 1963, p. 763-779. MR158747
  10. G. Contopoulos, Resonant case and small divisors in a third integral of motion, II. Astron. J., t. 70, 1965, p. 817-835. 
  11. [6] E. Diana, L. Galgani, A. Giorgilli and A. Scotti, On the direct construction of formal integrals of a Hamiltonian system near an equilibrium point. Boll. Un. Mat. It., t. 11, 1975, p. 84-89. Zbl0362.70024MR369777
  12. [7] C.L. Siegel, On the integrals of canonical systems. Ann. Math., t. 42, 1941, p. 806-822. Zbl0025.26503MR5818
  13. [8] J. Moser, Stabilitätsverhalten kanonisher differentialgleichungssysteme. Nachr. Akad. Wiss. Göttingen, Math. Phys. K1 IIa, nr., t. 6, 1955, p. 87-120. Zbl0066.33901MR79168
  14. [9] N.N. Nekhoroshev, Exponential estimate of the stability time of near-integrable Hamiltonian systems. Russ. Math. Surveys, t. 32, n° 6, 1977, p. 1-65. Zbl0389.70028
  15. N.N. Nekhoroshev, Exponential estimate of the stability time of near-integrable Hamiltonian systems, II. Trudy Sem. Petrovs., n° 5, 1979, p. 5-50 (in russian). Zbl0668.34046
  16. G. Benettin, L. Galgani and A. Giorgilli, A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltoniar systems. Cel. Mech., t. 37, 1985, p. 1-25. Zbl0602.58022MR830795
  17. G. Benettin and G. Gallavotti, Stability of motion near resonances in quasi integrable Hamiltonian systems. J. Stat. Phys., t. 44, 1986, p. 293-338. Zbl0636.70018MR857061
  18. G. Gallavotti, Quasi-integrable mechanical systems, in K. Osterwalder and R. Stora (eds.). Les Houches, Session XLIII, 1984. Zbl0662.70022
  19. [10] A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to be restricted three body problem. J. Diff. Eqs., to appear. Zbl0675.70027
  20. A. Giorgilli, L. Galgani, Rigorous estimates for the series expansions of Hamiltonian perturbation theory. Cel. Mech., t. 37, 1985, p. 95-112. MR838181
  21. [11] H. Russman, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, in J. Ehlers, K. Hepp and H. A. Weidenmüller, eds., Dynamical systems, theory and applications. Lecture notes in Physics, t. 38, 1974, p. 598-624. Zbl0319.35017MR467824
  22. [12] A. Giorgilli and L. Galgani, Formal integrals for an autonomous Hamiltonian system near an equilibrium point. Cel. Mech., t. 17, 1978, p. 267-280. Zbl0387.70022MR504624

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.