Curves of genus seven that do not satisfy the Gieseker-Petri theorem
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 3, page 697-706
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCastorena, Abel. "Curves of genus seven that do not satisfy the Gieseker-Petri theorem." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 697-706. <http://eudml.org/doc/194724>.
@article{Castorena2005,
abstract = {In the moduli space of curves of genus $g$, $\mathcal \{M\}_g$, let $\mathcal \{GP\}_g$ be the locus of curves that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that $\mathcal \{GP\}_7$ is a divisor in $\mathcal \{M\}_7$.},
author = {Castorena, Abel},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {697-706},
publisher = {Unione Matematica Italiana},
title = {Curves of genus seven that do not satisfy the Gieseker-Petri theorem},
url = {http://eudml.org/doc/194724},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Castorena, Abel
TI - Curves of genus seven that do not satisfy the Gieseker-Petri theorem
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 697
EP - 706
AB - In the moduli space of curves of genus $g$, $\mathcal {M}_g$, let $\mathcal {GP}_g$ be the locus of curves that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that $\mathcal {GP}_7$ is a divisor in $\mathcal {M}_7$.
LA - eng
UR - http://eudml.org/doc/194724
ER -
References
top- ARBARELLO, E. - CORNALBA, M., Su una congettura di Petri, Comment. Math. Helvetici, 56 (1981) 1-38. Zbl0505.14002MR615613
- ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of Algebraic Curves Volume I , Grundlehrem der Mathematischen Wissenschaften267, Springer-Verlag1984. Zbl0559.14017MR770932
- EISENBUD, D. - HARRIS, J., Irreducibility of some families of linear series with Brill-Noether Number , Ann. Scient. Ec. Norm. Sup. 4 série t. 22 (1989), 33-53. Zbl0691.14006MR985853
- GREUEL, G. M. - PFISTER, G. - SCHÖNEMAN, H, Singular 2.0 A Computer Algebra System for Polinomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2001), http://www.singular.uni-kl.de. Zbl0902.14040
- HARRIS, J. - MORRISON, I., Moduli of curves, Graduate texts in Mathematics187, Springer-Verlag1998. Zbl0913.14005MR1631825
- HARTSHORNE, R., Algebraic Geometry, Graduate texts in Mathematics52, Springer-Verlag1997. Zbl0367.14001MR463157
- STEFFEN, F., A generalized principal ideal theorem with applications to Brill- Noether theory, Invent. Math.132 (1998), 73-89. Zbl0935.14018MR1618632
- TEIXIDOR I BIGAS, M., half-canonical series on algebraic curves, Trans. Amer. Math. Soc.302 (1987), 99-115. Zbl0627.14022MR887499
- TEIXIDOR I BIGAS, M., The divisor of curves with a vanishing theta-null, Compositio Mathematica66 (1988), 15-22. Zbl0663.14017MR937985
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.