Curves of genus seven that do not satisfy the Gieseker-Petri theorem

Abel Castorena

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-B, Issue: 3, page 697-706
  • ISSN: 0392-4041

Abstract

top
In the moduli space of curves of genus g , g , let 𝒢𝒫 g be the locus of curves that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that 𝒢𝒫 7 is a divisor in 7 .

How to cite

top

Castorena, Abel. "Curves of genus seven that do not satisfy the Gieseker-Petri theorem." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 697-706. <http://eudml.org/doc/194724>.

@article{Castorena2005,
abstract = {In the moduli space of curves of genus $g$, $\mathcal \{M\}_g$, let $\mathcal \{GP\}_g$ be the locus of curves that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that $\mathcal \{GP\}_7$ is a divisor in $\mathcal \{M\}_7$.},
author = {Castorena, Abel},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {697-706},
publisher = {Unione Matematica Italiana},
title = {Curves of genus seven that do not satisfy the Gieseker-Petri theorem},
url = {http://eudml.org/doc/194724},
volume = {8-B},
year = {2005},
}

TY - JOUR
AU - Castorena, Abel
TI - Curves of genus seven that do not satisfy the Gieseker-Petri theorem
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 697
EP - 706
AB - In the moduli space of curves of genus $g$, $\mathcal {M}_g$, let $\mathcal {GP}_g$ be the locus of curves that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that $\mathcal {GP}_7$ is a divisor in $\mathcal {M}_7$.
LA - eng
UR - http://eudml.org/doc/194724
ER -

References

top
  1. ARBARELLO, E. - CORNALBA, M., Su una congettura di Petri, Comment. Math. Helvetici, 56 (1981) 1-38. Zbl0505.14002MR615613
  2. ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of Algebraic Curves Volume I , Grundlehrem der Mathematischen Wissenschaften267, Springer-Verlag1984. Zbl0559.14017MR770932
  3. EISENBUD, D. - HARRIS, J., Irreducibility of some families of linear series with Brill-Noether Number - 1 , Ann. Scient. Ec. Norm. Sup. 4 série t. 22 (1989), 33-53. Zbl0691.14006MR985853
  4. GREUEL, G. M. - PFISTER, G. - SCHÖNEMAN, H, Singular 2.0 A Computer Algebra System for Polinomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2001), http://www.singular.uni-kl.de. Zbl0902.14040
  5. HARRIS, J. - MORRISON, I., Moduli of curves, Graduate texts in Mathematics187, Springer-Verlag1998. Zbl0913.14005MR1631825
  6. HARTSHORNE, R., Algebraic Geometry, Graduate texts in Mathematics52, Springer-Verlag1997. Zbl0367.14001MR463157
  7. STEFFEN, F., A generalized principal ideal theorem with applications to Brill- Noether theory, Invent. Math.132 (1998), 73-89. Zbl0935.14018MR1618632
  8. TEIXIDOR I BIGAS, M., half-canonical series on algebraic curves, Trans. Amer. Math. Soc.302 (1987), 99-115. Zbl0627.14022MR887499
  9. TEIXIDOR I BIGAS, M., The divisor of curves with a vanishing theta-null, Compositio Mathematica66 (1988), 15-22. Zbl0663.14017MR937985

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.