Schwartz kernels on the Heisenberg group

Alessandro Veneruso

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 3, page 657-666
  • ISSN: 0392-4041

Abstract

top
Let H n be the Heisenberg group of dimension 2 n + 1 . Let L 1 , , L n be the partial sub-Laplacians on H n and T the central element of the Lie algebra of H n . We prove that the kernel of the operator m L 1 , , L n , - i T is in the Schwartz space S H n if m S R n + 1 . We prove also that the kernel of the operator h L 1 , , L n is in S H n if h S R n and that the kernel of the operator g L , - i T is in S H n if g S R 2 . Here L = L 1 + + L n is the Kohn-Laplacian on H n .

How to cite

top

Veneruso, Alessandro. "Schwartz kernels on the Heisenberg group." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 657-666. <http://eudml.org/doc/194743>.

@article{Veneruso2003,
abstract = {Let $H_\{n\}$ be the Heisenberg group of dimension $2n+1$. Let $\mathcal\{L\}_\{1\},\ldots, \mathcal\{L\}_\{n\}$ be the partial sub-Laplacians on $H_\{n\}$ and $T$ the central element of the Lie algebra of $H_\{n\}$. We prove that the kernel of the operator $m(\mathcal\{L\}_\{1\},\ldots, \mathcal\{L\}_\{n\},-iT)$ is in the Schwartz space $S(H_\{n\})$ if $m\in S(\mathbb\{R\}^\{n+1\} )$. We prove also that the kernel of the operator $h(\mathcal\{L\}_\{1\},\ldots, \mathcal\{L\}_\{n\})$ is in $S(H_\{n\})$ if $h\in S(\mathbb\{R\}^\{n\})$ and that the kernel of the operator $g(\mathcal\{L\}, -iT)$ is in $S(H_\{n\})$ if $g\in S(\mathbb\{R\}^\{2\})$. Here $\mathcal\{L\}= \mathcal\{L\}_\{1\}+ \ldots+\mathcal\{L\}_\{n\}$ is the Kohn-Laplacian on $H_\{n\}$.},
author = {Veneruso, Alessandro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {657-666},
publisher = {Unione Matematica Italiana},
title = {Schwartz kernels on the Heisenberg group},
url = {http://eudml.org/doc/194743},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Veneruso, Alessandro
TI - Schwartz kernels on the Heisenberg group
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 657
EP - 666
AB - Let $H_{n}$ be the Heisenberg group of dimension $2n+1$. Let $\mathcal{L}_{1},\ldots, \mathcal{L}_{n}$ be the partial sub-Laplacians on $H_{n}$ and $T$ the central element of the Lie algebra of $H_{n}$. We prove that the kernel of the operator $m(\mathcal{L}_{1},\ldots, \mathcal{L}_{n},-iT)$ is in the Schwartz space $S(H_{n})$ if $m\in S(\mathbb{R}^{n+1} )$. We prove also that the kernel of the operator $h(\mathcal{L}_{1},\ldots, \mathcal{L}_{n})$ is in $S(H_{n})$ if $h\in S(\mathbb{R}^{n})$ and that the kernel of the operator $g(\mathcal{L}, -iT)$ is in $S(H_{n})$ if $g\in S(\mathbb{R}^{2})$. Here $\mathcal{L}= \mathcal{L}_{1}+ \ldots+\mathcal{L}_{n}$ is the Kohn-Laplacian on $H_{n}$.
LA - eng
UR - http://eudml.org/doc/194743
ER -

References

top
  1. BENSON, C.- JENKINS, J.- RATCLIFF, G., The spherical transform of a Schwartz function on the Heisenberg group, J. Funct. Anal., 154 (1998), 379-423. Zbl0914.22013MR1612717
  2. BENSON, C.- JENKINS, J.- RATCLIFF, G.- WORKU, T., Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math., 71 (1996), 305-328. Zbl0876.22011MR1414831
  3. CYGAN, J., Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc., 83 (1981), 69-70. Zbl0475.43010MR619983
  4. FOLLAND, G. B.- STEIN, E. M., Hardy spaces on homogeneous groups, Princeton University Press, Princeton, 1982. Zbl0508.42025MR657581
  5. HULANICKI, A., A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math., 78 (1984), 253-266. Zbl0595.43007MR782662
  6. KORÁNYI, A.- VÁGI, S.- WELLAND, G. V., Remarks on the Cauchy integral and the conjugate function in generalized half-planes, J. Math. Mech., 19 (1970), 1069-1081. Zbl0197.36002MR265626
  7. MAUCERI, G., Maximal operators and Riesz means on stratified groups, Symposia Math., 29 (1987), 47-62. Zbl0659.22009MR951178
  8. TREVES, F., Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. Zbl0171.10402MR225131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.