Lyapunov exponents, KS-entropy and correlation decay in skew product extensions of Bernoulli endomorphisms

S. Siboni

Bollettino dell'Unione Matematica Italiana (1998)

  • Volume: 1-B, Issue: 3, page 631-638
  • ISSN: 0392-4041

How to cite

top

Siboni, S.. "Lyapunov exponents, KS-entropy and correlation decay in skew product extensions of Bernoulli endomorphisms." Bollettino dell'Unione Matematica Italiana 1-B.3 (1998): 631-638. <http://eudml.org/doc/194870>.

@article{Siboni1998,
author = {Siboni, S.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Lyapunov exponents; decay of correlations; skew product},
language = {eng},
month = {10},
number = {3},
pages = {631-638},
publisher = {Unione Matematica Italiana},
title = {Lyapunov exponents, KS-entropy and correlation decay in skew product extensions of Bernoulli endomorphisms},
url = {http://eudml.org/doc/194870},
volume = {1-B},
year = {1998},
}

TY - JOUR
AU - Siboni, S.
TI - Lyapunov exponents, KS-entropy and correlation decay in skew product extensions of Bernoulli endomorphisms
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/10//
PB - Unione Matematica Italiana
VL - 1-B
IS - 3
SP - 631
EP - 638
LA - eng
KW - Lyapunov exponents; decay of correlations; skew product
UR - http://eudml.org/doc/194870
ER -

References

top
  1. ABRAMOV, L. M.- ROKHLIN, V. A., The entropy of a skew product of measure-preserving transformations, Trans. Amer. Math. Soc. (Ser. 2), 48 (1965), 225-65. Zbl0156.06102
  2. BAZZANI, A.- SIBONI, S.- TURCHETTI, G.- VAIENTI, S., A model of modulated diffusion. Part I: analytical results, Jour. Stat. Phys., 76 (1994), 3/4, 929. Zbl0839.60073
  3. BOWEN, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470 (1975). Zbl0308.28010MR2423393
  4. MAÑÉ, R., Ergodic Theory and Differentiable Dynamics, Springer-Verlag, New York, N.Y. (1987). Zbl0616.28007MR889254
  5. OSELEDEC, V. I., A multiplicative ergodic theorem, Trans. Moscow Math. Soc., 19 (1968), 197-231. Zbl0236.93034MR240280
  6. PARRY, W., Ergodic properties of a one-parameter family of skew-products, Nonlinearity, 8 (1995), 821-825. Zbl0836.58028MR1355044
  7. PARRY, W.- POLLICOTT, M., Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Ed. Astérisque. Zbl0726.58003MR1085356
  8. PETERSEN, K., Ergodic Theory, Cambridge University Press, Cambridge, 1983. Zbl0507.28010MR833286
  9. RAGHUNATHAN, M. S., A proof of Oseledec's multiplicative ergodic theorem, Jsrael J. Math., 32 (1979), 356-362. Zbl0415.28013MR571089
  10. RUELLE, D., An inequality for the entropy of differentiable maps, Bol. Soc. Bras. de Mat., 9 (1978), 83-87. Zbl0432.58013MR516310
  11. RUELLE, D., Ergodic theory of differentiable dynamical systems, Publ. Math. IHES, 50 (1979), 275-306. Zbl0426.58014MR556581
  12. SIBONI, S., Analytical proof of the random phase approximation in a model of modulated diffusion, Jour. Phys. A, 25 (1994), 8171-8183. Zbl1002.37503MR1323588
  13. SIBONI, S., Decay of correlations in skew endomorphisms with Bernoulli base, Bollettino Unione Matematica Italiana, 11-B (1997), 463-501. Zbl0884.58061MR1459291
  14. SIBONI, S., Some ergodic properties of a mapping obtained by coupling the translation of the 1-torus with the endomorphism mod 2 x , 0 , 1 , Nonlinearity, 7 (1994), 1133-1141. Zbl0809.58039MR1284683

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.