Remarks on the quasiconvex envelope of some functions depending on quadratic forms

M. Bousselsal; H. Le Dret

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 2, page 469-486
  • ISSN: 0392-4041

Abstract

top
We compute the quasiconvex envelope of certain functions defined on the space M m n of real m × n matrices. These functions are basically functions of a quadratic form on M m n . The quasiconvex envelope computation is applied to densities that are related to the James-Ericksen elastic stored energy function.

How to cite

top

Bousselsal, M., and Le Dret, H.. "Remarks on the quasiconvex envelope of some functions depending on quadratic forms." Bollettino dell'Unione Matematica Italiana 5-B.2 (2002): 469-486. <http://eudml.org/doc/194950>.

@article{Bousselsal2002,
abstract = {We compute the quasiconvex envelope of certain functions defined on the space $M_\{mn\}$ of real $m \times n$ matrices. These functions are basically functions of a quadratic form on $M_\{mn\}$. The quasiconvex envelope computation is applied to densities that are related to the James-Ericksen elastic stored energy function.},
author = {Bousselsal, M., Le Dret, H.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {469-486},
publisher = {Unione Matematica Italiana},
title = {Remarks on the quasiconvex envelope of some functions depending on quadratic forms},
url = {http://eudml.org/doc/194950},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Bousselsal, M.
AU - Le Dret, H.
TI - Remarks on the quasiconvex envelope of some functions depending on quadratic forms
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/6//
PB - Unione Matematica Italiana
VL - 5-B
IS - 2
SP - 469
EP - 486
AB - We compute the quasiconvex envelope of certain functions defined on the space $M_{mn}$ of real $m \times n$ matrices. These functions are basically functions of a quadratic form on $M_{mn}$. The quasiconvex envelope computation is applied to densities that are related to the James-Ericksen elastic stored energy function.
LA - eng
UR - http://eudml.org/doc/194950
ER -

References

top
  1. BALL, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 64 (1977), 337-403. Zbl0368.73040MR475169
  2. BHATTACHARYA, K.- DOLZMAN, G., Relaxation of some multi-well problems, to appear, 1998. Zbl0977.74029MR1830413
  3. BOUSSELSAL, M.- BRIGHI, B., Rank-one-convex and quasiconvex envelopes for functions depending on quadratic forms, J. Convex Anal., 4 (1997), 305-319. Zbl0903.49011MR1613479
  4. COLLINS, C.- LUSKIN, M., Numerical modeling of the microstructure of crystals with symmetry-related variants, in Proceedings of the ARO US-Japan Workshop on Smart/Intelligent Materials and Systems, Honolulu, Hawaii, Technomic Publishing Company, Lancaster, PA, 1990. 
  5. DACOROGNA, B., Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, no. 78, Springer-Verlag, Berlin, 1989. Zbl0703.49001MR990890
  6. KOHN, R. V.- STRANG, G., Explicit relaxation of a variational problem in optimal design, Bull. A.M.S., 9 (1983), 211-214. Zbl0527.49002MR707959
  7. KOHN, R. V.- STRANG, G., Optimal design and relaxation of variational problems, I, II and III, Comm. Pure Appl. Math., 39 (1986), 113-137, 139-182 and 353-377. Zbl0621.49008MR820342
  8. LE DRET, H.- RAOULT, A., The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function, Proc. Roy. Soc. Edinburgh A, 125 (1995), 1179-1192. Zbl0843.73016MR1362998
  9. LE DRET, H.- RAOULT, A., Quasiconvex envelopes of stored energy densities that are convex with respect to the strain tensor, in Calculus of Variations, Applications and Computations, Pont-a-Mousson 1994 (C. Bandle, J. Bemelmans, M. Chipot, J. Saint Jean Paulin, I. Shafrir eds.), 138-146, Pitman Research Notes in Mathematics, Longman, 1995. Zbl0830.73012MR1419340
  10. MORREY, C. B. JR., Quasiconvexity and the semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), 25-53. Zbl0046.10803MR54865
  11. MORREY, C. B. JR., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. Zbl0142.38701MR202511
  12. ŠVERÁK, V., Rank-one-convexity does not imply quasiconvexity, Proc. Royal Soc. Edinburgh A, 120 (1992), 185-189. Zbl0777.49015MR1149994

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.