Metrizability of the unit ball of the dual of a quasi-normed cone
L. M. García-Raffi; S. Romaguera; E. A. Sánchez-Pérez; O. Valero
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 2, page 483-492
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGarcía-Raffi, L. M., et al. "Metrizability of the unit ball of the dual of a quasi-normed cone." Bollettino dell'Unione Matematica Italiana 7-B.2 (2004): 483-492. <http://eudml.org/doc/195015>.
@article{García2004,
abstract = {We obtain theorems of metrization and quasi-metrization for several topologies of weak* type on the unit ball of the dual of any separable quasi-normed cone. This is done with the help of an appropriate version of the Alaoglu theorem which is also obtained here.},
author = {García-Raffi, L. M., Romaguera, S., Sánchez-Pérez, E. A., Valero, O.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {483-492},
publisher = {Unione Matematica Italiana},
title = {Metrizability of the unit ball of the dual of a quasi-normed cone},
url = {http://eudml.org/doc/195015},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - García-Raffi, L. M.
AU - Romaguera, S.
AU - Sánchez-Pérez, E. A.
AU - Valero, O.
TI - Metrizability of the unit ball of the dual of a quasi-normed cone
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/6//
PB - Unione Matematica Italiana
VL - 7-B
IS - 2
SP - 483
EP - 492
AB - We obtain theorems of metrization and quasi-metrization for several topologies of weak* type on the unit ball of the dual of any separable quasi-normed cone. This is done with the help of an appropriate version of the Alaoglu theorem which is also obtained here.
LA - eng
UR - http://eudml.org/doc/195015
ER -
References
top- ALIMOV, A. R., On the structure of the complements of Chebyshev sets, Funct. Anal. Appl., 35 (2001), 176-182. Zbl1099.41501MR1864985
- DOLZHENKO, E. P.- SEVAST'YANOV, E. A., Sign-sensitive approximations, the space of sign-sensitive weights. The rigidity and the freedom of a system, Russian Acad. Sci. Dokl. Math., 48 (1994), 397-401. Zbl0818.41028MR1272960
- FLETCHER, P.- LINDGREN, W. F., Quasi-Uniform Spaces, Marcel Dekker, 1982. Zbl0501.54018MR660063
- GARCÍA-RAFFI, L. M.- ROMAGUERA, S.- SÁNCHEZ-PÉREZ, E. A., Sequence spaces and asymmetric norms in the theory of computational complexity, Math. Comput. Model., 36 (2002), 1-11. Zbl1063.68057MR1925055
- GARCÍA-RAFFI, L. M.- ROMAGUERA, S.- SÁNCHEZ-PÉREZ, E. A., The dual space of an asymmetric normed linear space, Quaestiones Math., 26 (2003), 83-96. Zbl1043.46021MR1974407
- KEIMEL, K.- ROTH, W., Ordered Cones and Approximation, Springer-Verlag, Berlin, 1992. Zbl0752.41033MR1176514
- KOPPERMAN, R., Lengths on semigroups and groups, Semigroup Forum, 25 (1982), 345-360. Zbl0502.22002MR679288
- KÜNZI, H. P. A., Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, in: Handbook of the History of General Topology, C. E. Aull and R. Lowen (eds), Kluwer Acad. Publ., 3 (2001), 853-968. Zbl1002.54002MR1900267
- ROMAGUERA, S.- SÁNCHEZ-PÉREZ, E. A.- VALERO, O., Quasi-normed monoids and quasi-metrics, Publ. Math. Debrecen, 62 (2003), 53-69. Zbl1026.54027MR1956801
- ROMAGUERA, S.- SANCHIS, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103 (2000), 292-301. Zbl0980.41029MR1749967
- ROMAGUERA, S.- SCHELLEKENS, M., Duality and quasi-normability for complexity spaces, Appl. Gen. Topology, 3 (2002), 91-112. Zbl1022.54018MR1931256
- TIX, R., Some results on Hahn-Banach-type theorems for continuous D-cones, Theoretical Comput. Sci., 264 (2001), 205-218. Zbl0973.68123MR1857456
- WOJTASZCZYK, P., Banach Spaces for Analysts, Cambridge Univ. Press, Cambridge, 1991. Zbl0724.46012MR1144277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.