A chain rule formula for the composition of a vector-valued function by a piecewise smooth function

François Murat; Cristina Trombetti

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 3, page 581-595
  • ISSN: 0392-4041

Abstract

top
We state and prove a chain rule formula for the composition T u of a vector-valued function u W 1 , r Ω ; R M by a globally Lipschitz-continuous, piecewise C 1 function T . We also prove that the map u T u is continuous from W 1 , r Ω ; R M into W 1 , r Ω for the strong topologies of these spaces.

How to cite

top

Murat, François, and Trombetti, Cristina. "A chain rule formula for the composition of a vector-valued function by a piecewise smooth function." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 581-595. <http://eudml.org/doc/195023>.

@article{Murat2003,
abstract = {We state and prove a chain rule formula for the composition $T(u)$ of a vector-valued function $u\in W^\{1, r\}(\Omega;\mathbb\{R\}^\{M\})$ by a globally Lipschitz-continuous, piecewise $C^\{1\}$ function $T$. We also prove that the map $u \to T(u)$ is continuous from $W^\{1, r\}(\Omega;\mathbb\{R\}^\{M\})$ into $W^\{1,r\}(\Omega)$ for the strong topologies of these spaces.},
author = {Murat, François, Trombetti, Cristina},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {581-595},
publisher = {Unione Matematica Italiana},
title = {A chain rule formula for the composition of a vector-valued function by a piecewise smooth function},
url = {http://eudml.org/doc/195023},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Murat, François
AU - Trombetti, Cristina
TI - A chain rule formula for the composition of a vector-valued function by a piecewise smooth function
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 581
EP - 595
AB - We state and prove a chain rule formula for the composition $T(u)$ of a vector-valued function $u\in W^{1, r}(\Omega;\mathbb{R}^{M})$ by a globally Lipschitz-continuous, piecewise $C^{1}$ function $T$. We also prove that the map $u \to T(u)$ is continuous from $W^{1, r}(\Omega;\mathbb{R}^{M})$ into $W^{1,r}(\Omega)$ for the strong topologies of these spaces.
LA - eng
UR - http://eudml.org/doc/195023
ER -

References

top
  1. AMBROSIO, L.- DAL MASO, G., A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., 108 (1990), 691-702. Zbl0685.49027MR969514
  2. BOCCARDO, L.- MURAT, F., Remarques sur l'homogénéisation de certains problèmes quasi-linéaires, Portugaliæ Math., 41 (1982), 535-562. Zbl0524.35042MR766874
  3. BOUCHUT, F., Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rat. Mech. Anal., 157 (2001), 75-90. Zbl0979.35032MR1822415
  4. KINDERLHERER, D.- STAMPACCHIA, G., An introduction to variational inequalities and their applications, Academic Press, New York (1980). Zbl0457.35001MR567696
  5. LANDES, R., On the existence of weak solutions of perturbated systems with critical growth, J. reine angew. Math., 393 (1989), 21-38. Zbl0664.35027MR972359
  6. MARCUS, M.- MIZEL, V. J., Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rat. Mech. Anal., 45 (1972), 294-320. Zbl0236.46033MR338765
  7. MARCUS, M.- MIZEL, V. J., Nemitsky operators on Sobolev spaces, Arch. Rat. Mech. Anal., 51 (1973), 347-370. Zbl0266.46029MR348480
  8. STAMPACCHIA, G., Equations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures, 16, Les Presses de l'Université de Montréal, Montréal (1966). Zbl0151.15501MR251373

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.