A chain rule formula for the composition of a vector-valued function by a piecewise smooth function
François Murat; Cristina Trombetti
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 3, page 581-595
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topMurat, François, and Trombetti, Cristina. "A chain rule formula for the composition of a vector-valued function by a piecewise smooth function." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 581-595. <http://eudml.org/doc/195023>.
@article{Murat2003,
abstract = {We state and prove a chain rule formula for the composition $T(u)$ of a vector-valued function $u\in W^\{1, r\}(\Omega;\mathbb\{R\}^\{M\})$ by a globally Lipschitz-continuous, piecewise $C^\{1\}$ function $T$. We also prove that the map $u \to T(u)$ is continuous from $W^\{1, r\}(\Omega;\mathbb\{R\}^\{M\})$ into $W^\{1,r\}(\Omega)$ for the strong topologies of these spaces.},
author = {Murat, François, Trombetti, Cristina},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {581-595},
publisher = {Unione Matematica Italiana},
title = {A chain rule formula for the composition of a vector-valued function by a piecewise smooth function},
url = {http://eudml.org/doc/195023},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Murat, François
AU - Trombetti, Cristina
TI - A chain rule formula for the composition of a vector-valued function by a piecewise smooth function
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 581
EP - 595
AB - We state and prove a chain rule formula for the composition $T(u)$ of a vector-valued function $u\in W^{1, r}(\Omega;\mathbb{R}^{M})$ by a globally Lipschitz-continuous, piecewise $C^{1}$ function $T$. We also prove that the map $u \to T(u)$ is continuous from $W^{1, r}(\Omega;\mathbb{R}^{M})$ into $W^{1,r}(\Omega)$ for the strong topologies of these spaces.
LA - eng
UR - http://eudml.org/doc/195023
ER -
References
top- AMBROSIO, L.- DAL MASO, G., A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., 108 (1990), 691-702. Zbl0685.49027MR969514
- BOCCARDO, L.- MURAT, F., Remarques sur l'homogénéisation de certains problèmes quasi-linéaires, Portugaliæ Math., 41 (1982), 535-562. Zbl0524.35042MR766874
- BOUCHUT, F., Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rat. Mech. Anal., 157 (2001), 75-90. Zbl0979.35032MR1822415
- KINDERLHERER, D.- STAMPACCHIA, G., An introduction to variational inequalities and their applications, Academic Press, New York (1980). Zbl0457.35001MR567696
- LANDES, R., On the existence of weak solutions of perturbated systems with critical growth, J. reine angew. Math., 393 (1989), 21-38. Zbl0664.35027MR972359
- MARCUS, M.- MIZEL, V. J., Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rat. Mech. Anal., 45 (1972), 294-320. Zbl0236.46033MR338765
- MARCUS, M.- MIZEL, V. J., Nemitsky operators on Sobolev spaces, Arch. Rat. Mech. Anal., 51 (1973), 347-370. Zbl0266.46029MR348480
- STAMPACCHIA, G., Equations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures, 16, Les Presses de l'Université de Montréal, Montréal (1966). Zbl0151.15501MR251373
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.