Simplicity of generic Steiner bundles
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 3, page 723-735
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBrambilla, Maria Chiara. "Simplicity of generic Steiner bundles." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 723-735. <http://eudml.org/doc/195093>.
@article{Brambilla2005,
abstract = {A Steiner bundle $E$ on $\mathbb\{P\}^\{n\}$ has a linear resolution of the form $0 \rightarrow \mathcal\{O\}(-1)^\{s\}\rightarrow \mathcal\{O\}^\{t\}\rightarrow E \rightarrow 0$. In this paper we prove that a generic Steiner bundle $E$ is simple if and only if $\chi (\mathrm\{End\} E)$ is less or equal to 1. In particular we show that either $E$ is exceptional or it satisfies the inequality $t\leq \left( \frac\{n+1+\sqrt\{(n+1)^\{2\}-4\}\}\{2\} \right)s$.},
author = {Brambilla, Maria Chiara},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {723-735},
publisher = {Unione Matematica Italiana},
title = {Simplicity of generic Steiner bundles},
url = {http://eudml.org/doc/195093},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Brambilla, Maria Chiara
TI - Simplicity of generic Steiner bundles
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 723
EP - 735
AB - A Steiner bundle $E$ on $\mathbb{P}^{n}$ has a linear resolution of the form $0 \rightarrow \mathcal{O}(-1)^{s}\rightarrow \mathcal{O}^{t}\rightarrow E \rightarrow 0$. In this paper we prove that a generic Steiner bundle $E$ is simple if and only if $\chi (\mathrm{End} E)$ is less or equal to 1. In particular we show that either $E$ is exceptional or it satisfies the inequality $t\leq \left( \frac{n+1+\sqrt{(n+1)^{2}-4}}{2} \right)s$.
LA - eng
UR - http://eudml.org/doc/195093
ER -
References
top- ANCONA, V. - OTTAVIANI, G., Stability of special instanton bundles on , Trans. Amer. Math. Soc., 341 (1994), 677-693, . Zbl0810.14007MR1136544
- DOLGACHEV, I. - KAPRANOV, M., Arrangements of hyperplanes and vector bundles on , Duke Math. J., 71 (1993), 633-664. Zbl0804.14007MR1240599
- DREÂZET, J.-M. - LE POTIER, J., Fibrés stables et fibrés exceptionnels sur , Ann. Sci. École Norm. Sup. (4), 18 (1985), 193-243. Zbl0586.14007MR816365
- LENSTRA, H. W., Solving the Pell equation, Notices Amer. Math. Soc., 49 (2002), 182-192. Zbl1126.11312MR1875156
- OKONEK, C. - SCHNEIDER, M. - SPINDLER, H., Vector bundles on complex projective spaces, volume 3 of Progress in Mathematics, BirkhäuserBoston, Mass., 1980. Zbl0438.32016MR561910
- RUDAKOV, A. N., Markov numbers and exceptional bundles on , Izv. Akad. Nauk SSSR Ser. Mat., 52 (1988), 100-112, 240. Zbl0661.14017MR936525
- RUDAKOV, A. N., Helices and vector bundles, volume 148 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1990. Zbl0727.00022MR1074777
- SAMUEL, P., Théorie algébrique des nombres, Hermann, Paris, 1967. Zbl0239.12001MR215808
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.