Displaying similar documents to “Simplicity of generic Steiner bundles”

A sharp weighted Wirtinger inequality

Tonia Ricciardi (2005)

Bollettino dell'Unione Matematica Italiana

Similarity:

We obtain a sharp estimate for the best constant C > 0 in the Wirtinger type inequality 0 2 π γ p ω 2 C 0 2 π γ q ω 2 where γ is bounded above and below away from zero, w is 2 π -periodic and such that 0 2 π γ p ω = 0 , and p + q 0 . Our result generalizes an inequality of Piccinini and Spagnolo.

On the smallest degree of a surface containing a space curve

Margherita Roggero, Paolo Valabrega (1998)

Bollettino dell'Unione Matematica Italiana

Similarity:

Sia C una curva dello spazio di grado D contenuta in una superficie di grado r e non in una di grado r - 1 . Se C è integra, allora r 6 D - 2 - 2 ; questo limite superiore, raggiunto in alcuni casi (cfr. [5]), non vale però per curve arbitrarie (cfr. [?, 3 (iii)]). Ogni curva C dello spazio (anche non ridotta o riducibile) può essere ottenuta come schema degli zero di una sezione non nulla di un opportuno fascio riflessivo F di rango 2. Mediante i fasci riflessivi, siamo in grado di estendere alle curve...

A compactification of ( * ) 4 with no non-constant meromorphic functions

Jun-Muk Hwang, Dror Varolin (2002)

Annales de l’institut Fourier

Similarity:

For each 2-dimensional complex torus T , we construct a compact complex manifold X ( T ) with a 2 -action, which compactifies ( * ) 4 such that the quotient of ( * ) 4 by the 2 -action is biholomorphic to T . For a general T , we show that X ( T ) has no non-constant meromorphic functions.

Bounds for Chern classes of semistable vector bundles on complex projective spaces

Wiera Dobrowolska (1993)

Colloquium Mathematicae

Similarity:

This work concerns bounds for Chern classes of holomorphic semistable and stable vector bundles on n . Non-negative polynomials in Chern classes are constructed for 4-vector bundles on 4 and a generalization of the presented method to r-bundles on n is given. At the end of this paper the construction of bundles from complete intersection is introduced to see how rough the estimates we obtain are.