Quantum moment equations for a two-band k p Hamiltonian

Luigi Barletti

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-B, Issue: 1, page 103-121
  • ISSN: 0392-4041

Abstract

top
The hydrodynamic moment equations for a quantum system described by a two-band k p Hamiltonian are derived. In the case of pure states, it is proved that the order-0 and order-1 moment equations yield a closed system which is the two band analogue of Madelung's fluid equations.

How to cite

top

Barletti, Luigi. "Quantum moment equations for a two-band $k\cdot p$ Hamiltonian." Bollettino dell'Unione Matematica Italiana 8-B.1 (2005): 103-121. <http://eudml.org/doc/195127>.

@article{Barletti2005,
abstract = {The hydrodynamic moment equations for a quantum system described by a two-band $k \cdot p$ Hamiltonian are derived. In the case of pure states, it is proved that the order-0 and order-1 moment equations yield a closed system which is the two band analogue of Madelung's fluid equations.},
author = {Barletti, Luigi},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {103-121},
publisher = {Unione Matematica Italiana},
title = {Quantum moment equations for a two-band $k\cdot p$ Hamiltonian},
url = {http://eudml.org/doc/195127},
volume = {8-B},
year = {2005},
}

TY - JOUR
AU - Barletti, Luigi
TI - Quantum moment equations for a two-band $k\cdot p$ Hamiltonian
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/2//
PB - Unione Matematica Italiana
VL - 8-B
IS - 1
SP - 103
EP - 121
AB - The hydrodynamic moment equations for a quantum system described by a two-band $k \cdot p$ Hamiltonian are derived. In the case of pure states, it is proved that the order-0 and order-1 moment equations yield a closed system which is the two band analogue of Madelung's fluid equations.
LA - eng
UR - http://eudml.org/doc/195127
ER -

References

top
  1. BARLETTI, L., A mathematical introduction to the Wigner formulation of quantum mechanics, B. Unione Mat. Ital. B, 6-B (2003), 693-716. Zbl1117.81091MR2014828
  2. BARLETTI, L., On the thermal equilibrium of a quantum system described by a twoband Kane Hamiltonian, submitted. 
  3. BÖHM, A., Quantum Mechanics, Springer Verlag, 1979. Zbl0994.81502MR580320
  4. BORGIOLI, G. - FROSALI, G. - ZWEIFEL, P. F., Wigner approach to the two-band Kane model for a tunneling diode, Transport Theory Stat. Phys., 32 (2003), 347- 366. Zbl1035.81028MR2014722
  5. DEGOND, P. - RINGHOFER, C., Quantum moment hydrodynamics and the entropy principle, J. Statist. Phys., 112 (2003), 587-628. Zbl1035.82028MR1997263
  6. DEMEIO, L. - BARLETTI, L. - BORDONE, P. - JACOBONI, C., Wigner function for multiband transport in semiconductors, Transport Theory Stat. Phys., 32 (2003), 307-325. Zbl1029.82038MR2014720
  7. FEYNMAN, R. P., Statistical Mechanics, W. A. Benjamin Inc., 1972. Zbl0997.82500
  8. FOLLAND, G. B., Harmonic Analysis in Phase Space, Princeton University Press, 1989. Zbl0682.43001MR983366
  9. GARDNER, C. L., The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54 (1994), 409-427. Zbl0815.35111MR1265234
  10. GASSER, I. - MARKOWICH, P. A. - UNTERREITER, A., Quantum hydrodynamics, in Modeling of Collisions, Gauthier-Villars, 1997. 
  11. JÜNGEL, A., Quasi-Hydrodynamic Semiconductor Equations, Birkhäuser, 2001. Zbl0969.35001MR1818867
  12. KANE, E. O., Zener tunneling in semiconductors, J. Phys. Chem. Solids, 12 (1959), 181-188. 
  13. KANE, E. O., The k p method, in Physics of III-V Compounds, Semiconductors and Semimetals, Vol. 1, Academic Press, 1966. 
  14. LANDAU, L. D. - LIFSHITZ, E. M., Quantum Mechanics: non-relativistic theory, 3rd ed., Pergamon Press, 1977. Zbl0178.57901MR400931
  15. LEVERMORE, C. D., Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065. Zbl1081.82619MR1392419
  16. LIONS, P. L. - PAUL, T., Sur les mesures de Wigner, Rev. Matematica Iberoamericana, 9 (1993), 553-618. Zbl0801.35117MR1251718
  17. LUTTINGER, J. M. - KOHN, W., Motion of electrons and holes in perturbed periodic fields, Phys. Rev., 97 (1955), 869-882. Zbl0064.23801
  18. MADELUNG, E., Quantentheorie in hydrodynamischer Form, Zeitschr. f. Phys., 40 (1926), 322-326. 
  19. MARKOWICH, P. A. - RINGHOFER, C. A. - SCHMEISER, C., Semiconductor Equations, Springer Verlag, 1990. Zbl0765.35001MR1063852
  20. WENCKEBACH, T., Essentials of Semiconductor Physics, Wiley, 1999. 
  21. YANG, R. Q. - XU, J. M., Analysis of transmission in polytype interband tunneling heterostructures, J. Appl. Phys., 72 (1992), 4714-4726. MR1159619

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.