A mathematical introduction to the Wigner formulation of quantum mechanics

Luigi Barletti

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 3, page 693-716
  • ISSN: 0392-4041

Abstract

top
The paper is devoted to review, from a mathematical point of view, some fundamental aspects of the Wigner formulation of quantum mechanics. Starting from the axioms of quantum mechanics and of quantum statistics, we justify the introduction of the Wigner transform and eventually deduce the Wigner equation.

How to cite

top

Barletti, Luigi. "A mathematical introduction to the Wigner formulation of quantum mechanics." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 693-716. <http://eudml.org/doc/195802>.

@article{Barletti2003,
abstract = {The paper is devoted to review, from a mathematical point of view, some fundamental aspects of the Wigner formulation of quantum mechanics. Starting from the axioms of quantum mechanics and of quantum statistics, we justify the introduction of the Wigner transform and eventually deduce the Wigner equation.},
author = {Barletti, Luigi},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {693-716},
publisher = {Unione Matematica Italiana},
title = {A mathematical introduction to the Wigner formulation of quantum mechanics},
url = {http://eudml.org/doc/195802},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Barletti, Luigi
TI - A mathematical introduction to the Wigner formulation of quantum mechanics
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 693
EP - 716
AB - The paper is devoted to review, from a mathematical point of view, some fundamental aspects of the Wigner formulation of quantum mechanics. Starting from the axioms of quantum mechanics and of quantum statistics, we justify the introduction of the Wigner transform and eventually deduce the Wigner equation.
LA - eng
UR - http://eudml.org/doc/195802
ER -

References

top
  1. ARNOLD, A.- LANGE, H.- ZWEIFEL, P. F., A discrete-velocity stationary Wigner equation, J. Math. Phys., 41 (2000), 7167-7180. Zbl1019.82020MR1788568
  2. ARNOLD, A.- STEINRÜCK, H., The "electromagnetic" Wigner equation for an electron with spin, Z. Angew. Math. Phys., 40 (1989), 793-815. Zbl0701.35130MR1027576
  3. BANASIAK, J.- BARLETTI, L., On the existence of propagators in stationary Wigner equation without velocity cut-off, Transport Theory Stat. Phys., 30 (2001), 659-672. Zbl0990.82019MR1865352
  4. BARLETTI, L.- ZWEIFEL, P. F., Parity-decomposition method for the stationary Wigner equation with inflow boundary conditions, Transport Theory Stat. Phys., 30 (2001), 507-520. Zbl1006.82032MR1866627
  5. BEN ABDALLAH, N.- DEGOND, P.- GAMBA, I., Inflow boundary conditions for the time dependent one-dimensional Schrödinger equation, C. R. Acad. Sci. Paris, Sér. I Math., 331 (2000), 1023-1028. Zbl1158.35344MR1809447
  6. BILLINGSLEY, P., Probability and Measure (third edition), Wiley, 1995. Zbl0822.60002MR1324786
  7. BORDONE, P.- PASCOLI, M.- BRUNETTI, R.- BERTONI, A.- JACOBONI, C., Quantum transport of electrons in open nanostructures with the Wigner-function formalism, Phys. Rev. B, 59 (1999), 3060-3069. 
  8. CARRUTHERS, P.- ZACHARIASEN, F., Quantum collision theory with phase-space distributions, Rev. Mod. Phys., 55 (1983), 245-285. MR698046
  9. CLAASEN, T. A.- MECKLENBRÄUKER, W. F., The Wigner distribution - a tool for time-frequency signal analysis, Philips J. Res., 35 (1980), 217-250. Zbl0474.94007MR590577
  10. DE GROOT, S. R.- SUTTORP, L. G., Foundations of Electrodynamics, North-Holland, 1972. 
  11. FERRY, D. K.- GOODNICK, S. M., Transport in Nanostructures, Cambridge University Press, 1997. 
  12. FEYNMAN, R. P., Statistical Mechanics, W. A. Benjamin Inc., 1972. Zbl0997.82500
  13. FOLLAND, G. B., Harmonic Analysis in Phase Space, Princeton University Press, 1989. Zbl0682.43001MR983366
  14. FRENSLEY, W. R., Boundary conditions for open quantum systems driven far from equilibrium, Rev. Modern Phys., 62 (1990), 745-791. 
  15. FROMMLET, F., Time irreversibility in quantum mechanical systems, PhD thesis, Technischen Universität Berlin, 2000. 
  16. GÉRARD, P.- MARKOWICH, P. A.- MAUSER, N. J.- POUPAUD, F., Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997), 323-379. Zbl0881.35099MR1438151
  17. LIBOFF, R. L., Kinetic Theory: Classical, Quantum and Relativistic Descriptions, Wiley, 1998. 
  18. LIONS, P. L.- PAUL, T., Sur les mesures de Wigner, Rev. Matematica Iberoamericana, 9 (1993), 553-618. Zbl0801.35117MR1251718
  19. MACKEY, G. W., The Mathematical Foundations of Quantum Mechanics, W. A. Benjamin Inc., 1963. Zbl0114.44002
  20. MARKOWICH, P. A., On the equivalence of the Schrödinger and the quantum Liouville equations, Math. Meth. Appl. Sci., 11 (1989), 459-469. Zbl0696.47042MR1001097
  21. MARKOWICH, P. A.- MAUSER, N. J.- POUPAUD, F., A Wigner function approach to (semi)classical limits: Electrons in a periodic potential, J. Math. Phys., 35 (1994), 1066-1094. Zbl0805.35106MR1262733
  22. MARKOWICH, P. A.- RINGHOFER, C. A.- SCHMEISER, C., Semiconductor Equations, Springer Verlag, 1990. Zbl0765.35001MR1063852
  23. VON NEUMANN, J., Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955. Zbl0064.21503MR66944
  24. REED, M.- SIMON, B., Methods of Modern Mathematical Physics, I - Functional Analysis, Academic Press, 1972. Zbl0242.46001MR493419
  25. TATARSKIĬ, V. I., The Wigner representation of quantum mechanics, Sov. Phys. Usp., 26 (1983), 311-327. MR730012
  26. WEYL, H., The Theory of Groups and Quantum Mechanics, Dover, 1950. Zbl0041.56804JFM58.1374.01
  27. WIGNER, E., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759. JFM58.0948.07
  28. ZHAO, P.- CUI, H. L.- WOOLARD, D. L.- JENSEN, K. L.- BUOT, F. A., Equivalent circuit parameters of resonant tunneling diodes extracted from self-consistent Wigner-Poisson simulation, IEEE Transactions on Electron Devices, 48 (2001), 614-626. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.