A mathematical introduction to the Wigner formulation of quantum mechanics
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 3, page 693-716
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ARNOLD, A.- LANGE, H.- ZWEIFEL, P. F., A discrete-velocity stationary Wigner equation, J. Math. Phys., 41 (2000), 7167-7180. Zbl1019.82020MR1788568
- ARNOLD, A.- STEINRÜCK, H., The "electromagnetic" Wigner equation for an electron with spin, Z. Angew. Math. Phys., 40 (1989), 793-815. Zbl0701.35130MR1027576
- BANASIAK, J.- BARLETTI, L., On the existence of propagators in stationary Wigner equation without velocity cut-off, Transport Theory Stat. Phys., 30 (2001), 659-672. Zbl0990.82019MR1865352
- BARLETTI, L.- ZWEIFEL, P. F., Parity-decomposition method for the stationary Wigner equation with inflow boundary conditions, Transport Theory Stat. Phys., 30 (2001), 507-520. Zbl1006.82032MR1866627
- BEN ABDALLAH, N.- DEGOND, P.- GAMBA, I., Inflow boundary conditions for the time dependent one-dimensional Schrödinger equation, C. R. Acad. Sci. Paris, Sér. I Math., 331 (2000), 1023-1028. Zbl1158.35344MR1809447
- BILLINGSLEY, P., Probability and Measure (third edition), Wiley, 1995. Zbl0822.60002MR1324786
- BORDONE, P.- PASCOLI, M.- BRUNETTI, R.- BERTONI, A.- JACOBONI, C., Quantum transport of electrons in open nanostructures with the Wigner-function formalism, Phys. Rev. B, 59 (1999), 3060-3069.
- CARRUTHERS, P.- ZACHARIASEN, F., Quantum collision theory with phase-space distributions, Rev. Mod. Phys., 55 (1983), 245-285. MR698046
- CLAASEN, T. A.- MECKLENBRÄUKER, W. F., The Wigner distribution - a tool for time-frequency signal analysis, Philips J. Res., 35 (1980), 217-250. Zbl0474.94007MR590577
- DE GROOT, S. R.- SUTTORP, L. G., Foundations of Electrodynamics, North-Holland, 1972.
- FERRY, D. K.- GOODNICK, S. M., Transport in Nanostructures, Cambridge University Press, 1997.
- FEYNMAN, R. P., Statistical Mechanics, W. A. Benjamin Inc., 1972. Zbl0997.82500
- FOLLAND, G. B., Harmonic Analysis in Phase Space, Princeton University Press, 1989. Zbl0682.43001MR983366
- FRENSLEY, W. R., Boundary conditions for open quantum systems driven far from equilibrium, Rev. Modern Phys., 62 (1990), 745-791.
- FROMMLET, F., Time irreversibility in quantum mechanical systems, PhD thesis, Technischen Universität Berlin, 2000.
- GÉRARD, P.- MARKOWICH, P. A.- MAUSER, N. J.- POUPAUD, F., Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997), 323-379. Zbl0881.35099MR1438151
- LIBOFF, R. L., Kinetic Theory: Classical, Quantum and Relativistic Descriptions, Wiley, 1998.
- LIONS, P. L.- PAUL, T., Sur les mesures de Wigner, Rev. Matematica Iberoamericana, 9 (1993), 553-618. Zbl0801.35117MR1251718
- MACKEY, G. W., The Mathematical Foundations of Quantum Mechanics, W. A. Benjamin Inc., 1963. Zbl0114.44002
- MARKOWICH, P. A., On the equivalence of the Schrödinger and the quantum Liouville equations, Math. Meth. Appl. Sci., 11 (1989), 459-469. Zbl0696.47042MR1001097
- MARKOWICH, P. A.- MAUSER, N. J.- POUPAUD, F., A Wigner function approach to (semi)classical limits: Electrons in a periodic potential, J. Math. Phys., 35 (1994), 1066-1094. Zbl0805.35106MR1262733
- MARKOWICH, P. A.- RINGHOFER, C. A.- SCHMEISER, C., Semiconductor Equations, Springer Verlag, 1990. Zbl0765.35001MR1063852
- VON NEUMANN, J., Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955. Zbl0064.21503MR66944
- REED, M.- SIMON, B., Methods of Modern Mathematical Physics, I - Functional Analysis, Academic Press, 1972. Zbl0242.46001MR493419
- TATARSKIĬ, V. I., The Wigner representation of quantum mechanics, Sov. Phys. Usp., 26 (1983), 311-327. MR730012
- WEYL, H., The Theory of Groups and Quantum Mechanics, Dover, 1950. Zbl0041.56804JFM58.1374.01
- WIGNER, E., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759. JFM58.0948.07
- ZHAO, P.- CUI, H. L.- WOOLARD, D. L.- JENSEN, K. L.- BUOT, F. A., Equivalent circuit parameters of resonant tunneling diodes extracted from self-consistent Wigner-Poisson simulation, IEEE Transactions on Electron Devices, 48 (2001), 614-626.