A bound for the average rank of a family of abelian varieties
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 1, page 241-252
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topWazir, Rania. "A bound for the average rank of a family of abelian varieties." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 241-252. <http://eudml.org/doc/195136>.
@article{Wazir2004,
abstract = {In this note, we consider a one-parameter family of Abelian varieties $A/ \mathbb\{Q\}(T)$, and find an upper bound for the average rank in terms of the generic rank. This bound is based on Michel's estimates for the average rank in a one-parameter family of Abelian varieties, and extends previous work of Silverman for elliptic surfaces.},
author = {Wazir, Rania},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {241-252},
publisher = {Unione Matematica Italiana},
title = {A bound for the average rank of a family of abelian varieties},
url = {http://eudml.org/doc/195136},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Wazir, Rania
TI - A bound for the average rank of a family of abelian varieties
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 241
EP - 252
AB - In this note, we consider a one-parameter family of Abelian varieties $A/ \mathbb{Q}(T)$, and find an upper bound for the average rank in terms of the generic rank. This bound is based on Michel's estimates for the average rank in a one-parameter family of Abelian varieties, and extends previous work of Silverman for elliptic surfaces.
LA - eng
UR - http://eudml.org/doc/195136
ER -
References
top- APOSTOL, T., Introduction to analytic number theory, Undergrad. Texts Math., Springer-Verlag, Berlin, 1976. Zbl0335.10001MR434929
- BRUMER, A.- KRAMER, K., The conductor of an abelian variety, Comp. Math, 92 (1994), 227-248. Zbl0818.14016MR1283229
- BOSCH, S.- LUTKEBOHMERT, W.- RAYNAUD, M., Neron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 21, Springer Verlag, Berlin, 1990. Zbl0705.14001MR1045822
- DELIGNE, P., La conjecture de Weil II, Publ. Math. IHES, 52 (1981), 313-428. Zbl0456.14014MR601520
- FOUVRY, E.- POMYKALA, J., Rang des courbes elliptiques et sommes d'exponentielles, Monatsh. Math., 116 (1993), 115-125. Zbl0796.14022MR1245858
- KATZ, N. M., Etude cohomologique des pinceaux de Lefschetz, SGA 7 II, LNM340, Springer Verlag, 1974, pp. 254-327. Zbl0284.14007
- MICHEL, P., Rang moyen de familles de courbes elliptiques et lois de Sato-Tate, Monatsh. Math., 120 (1995), 127-136. Zbl0869.11052MR1348365
- MICHEL, P., Le rang de familles de variétés abéliennes, J. Alg. Geom., 6 (1997), 201-234. Zbl0882.11033MR1489113
- MILNE, J. S., Jacobian varieties, Arithmetic Geometry, Springer-Verlag, Berlin (1986), 167-212. Zbl0604.14018MR861976
- RAMAKRISHNAN, D., Regulators, algebraic cycles, and values of -functions, Algebraic -theory and Algebraic Number Theory (M. R. Stein and R. K. Dennis, eds.), Contemp. Math., vol. 83, AMS, Providence, 1989, pp. 183-307. Zbl0694.14002MR991982
- ROSEN, M.- SILVERMAN, J., On the rank of an elliptic surface, Invent. Math., 133 (1998), 43-67. Zbl0905.14019MR1626465
- SERRE, J.-P., Zeta and functions, Harper and Row, New York, 1965, pp. 82-92. Zbl0171.19602MR194396
- SHIODA, T., On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), 20-59. Zbl0226.14013MR429918
- SHIODA, T., On the Picard number of a Fermat surface, J. Fac. Sci. Univ. Tokyo, Sec. IA, 28 (1982), 725-734. Zbl0567.14021MR656049
- SHIODA, T., Some remarks on elliptic curves over function fields, Astérisque, 209 (1992), 99-114. Zbl0820.14016MR1211006
- SHIODA, T., Mordell-Weil lattices for higher genus fibration over a curve, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999, pp. 359-373. Zbl0947.14012MR1714831
- SILVERMAN, J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer Verlag, 1994. Zbl0911.14015MR1312368
- SILVERMAN, J. H., The average rank of elliptic curves, J. reine angew. Math., 504 (1998), 227-236. Zbl0923.11087MR1656771
- TATE, J., Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, pp. 93-110. Zbl0213.22804MR225778
- WAZIR, R., A local-global summation formula for Abelian varieties, Preprint, available on http://www.arxiv.org/abs/math.NT/0302266 (Feb. 2003).
- WONG, S., On the Néron-Severi groups of fibered varieties, To appear, J. reine Angew. Math. (2002)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.